1
|
Liu Z, Zhang L, Cui T, Ma M, Ren J, Qu X. A Nature-Inspired Metal-Organic Framework Discriminator for Differential Diagnosis of Cancer Cell Subtypes. Angew Chem Int Ed Engl 2021; 60:15436-15444. [PMID: 33960090 DOI: 10.1002/anie.202102286] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Metabolic glycan labeling (MGL) followed by bioorthogonal chemistry provides a powerful tool for tumor imaging and therapy. However, selectively metabolic labeling of cells or tissues of interest remains a challenge. Particularly, owing to tumor heterogeneity including tumor subtypes and interpatient heterogeneity, it is far more difficult to realize tumor-cell-selective metabolic labeling for precise diagnosis. Inspired by nature, we designed azidosugar-functionalized metal-organic frameworks camouflaged with cancer cell membranes to accomplish cancer-cell-selective MGL in vivo. With abundant receptors, this biomimetic platform not only selectively targets homotypic cells but also realizes different breast cancer subtype-selective MGL. Moreover, the endo/lysosomal-escaped ZIF-8 can make azidosugar escape from lysosomes and accelerate its metabolic incorporation. This strategy also takes advantage of cancer-tissue-derived cell membranes, which may have huge potential for personalized diagnosis and therapy.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
2
|
Liu Z, Zhang L, Cui T, Ma M, Ren J, Qu X. A Nature‐Inspired Metal–Organic Framework Discriminator for Differential Diagnosis of Cancer Cell Subtypes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100039 P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
3
|
Wu ZL, Qi YN, Yin XJ, Yang X, Chen CM, Yu JY, Yu JC, Lin YM, Hui F, Liu PL, Liang YX, Zhang Y, Zhao MS. Polymer-Based Device Fabrication and Applications Using Direct Laser Writing Technology. Polymers (Basel) 2019; 11:E553. [PMID: 30960537 PMCID: PMC6473384 DOI: 10.3390/polym11030553] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Polymer materials exhibit unique properties in the fabrication of optical waveguide devices, electromagnetic devices, and bio-devices. Direct laser writing (DLW) technology is widely used for micro-structure fabrication due to its high processing precision, low cost, and no need for mask exposure. This paper reviews the latest research progresses of polymer-based micro/nano-devices fabricated using the DLW technique as well as their applications. In order to realize various device structures and functions, different manufacture parameters of DLW systems are adopted, which are also investigated in this work. The flexible use of the DLW process in various polymer-based microstructures, including optical, electronic, magnetic, and biomedical devices are reviewed together with their applications. In addition, polymer materials which are developed with unique properties for the use of DLW technology are also discussed.
Collapse
Affiliation(s)
- Zhen-Lin Wu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Ya-Nan Qi
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Xiao-Jie Yin
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, China.
- Henan Shi-Jia Photons Technology Co., Ltd., Hebi 458030, China.
| | - Xin Yang
- Department of Electrical and Electronics Engineering, School of Engineering, Cardiff University, Cardiff CF10 3AT, UK.
| | - Chang-Ming Chen
- College of Electronic Science and Engineering, Jilin University State Key Laboratory of Integrated Optoelectronics, JLU Region, Changchun 130012, China.
| | - Jing-Ying Yu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Jia-Chen Yu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Yu-Meng Lin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Fang Hui
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Peng-Li Liu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Yu-Xin Liang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Yang Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| | - Ming-Shan Zhao
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Liu J, Cui M, Niu L, Zhou H, Zhang S. Enhanced Peroxidase-Like Properties of Graphene-Hemin-Composite Decorated with Au Nanoflowers as Electrochemical Aptamer Biosensor for the Detection of K562 Leukemia Cancer Cells. Chemistry 2016; 22:18001-18008. [DOI: 10.1002/chem.201604354] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
| | - Meirong Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong; Shandong Normal University; Jinan 250014 P.R. China
| | - Li Niu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
| | - Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers; College of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 P.R. China
| |
Collapse
|
5
|
Recent advances in nanostructures and nanocrystals as signal-amplification elements in electrochemical cytosensing. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.04.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Safaei TS, Mohamadi RM, Sargent EH, Kelley SO. In Situ Electrochemical ELISA for Specific Identification of Captured Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14165-9. [PMID: 25938818 DOI: 10.1021/acsami.5b02404] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells disseminated from a tumor into the bloodstream. Their presence in patient blood samples has been associated with metastatic disease. Here, we report a simple system that enables the isolation and detection of these rare cancer cells. By developing a sensitive electrochemical ELISA method integrated within a microfluidic cell capture system, were we able to reliably detect very low levels of cancer cells in whole blood. Our results indicate that the new system provides the clinically relevant specificity and sensitivity needed for a convenient, point-of-need assay for cancer cell counting.
Collapse
Affiliation(s)
- Tina Saberi Safaei
- †Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Reza M Mohamadi
- ‡Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Edward H Sargent
- †Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Shana O Kelley
- ‡Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- §Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street Toronto, Ontario M5S 3G9, Canada
- ⊥Department of Biochemistry, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
7
|
Liu J, Xin X, Zhou H, Zhang S. A Ternary Composite Based on Graphene, Hemin, and Gold Nanorods with High Catalytic Activity for the Detection of Cell-Surface Glycan Expression. Chemistry 2014; 21:1908-14. [DOI: 10.1002/chem.201404557] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Indexed: 12/23/2022]
|
8
|
Zhou H, Yang Y, Li C, Yu B, Zhang S. Enhanced Iridium Complex Electrochemiluminescence Cytosensing and Dynamic Evaluation of Cell-Surface Carbohydrate Expression. Chemistry 2014; 20:14736-43. [DOI: 10.1002/chem.201403470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Indexed: 01/09/2023]
|
9
|
A novel gold nanoparticle-doped polyaniline nanofibers-based cytosensor confers simple and efficient evaluation of T-cell activation. Biosens Bioelectron 2013; 50:167-73. [PMID: 23850784 DOI: 10.1016/j.bios.2013.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/22/2022]
Abstract
A rapid, easy assay for monitoring dynamics of T-cell activation should help to guide potential medical evaluation of immune responses or immunopathogenesis. Here, we report development of novel electrochemical cytosensors for dynamic analyses of T-cell activation markers on living cells. Gold nanoparticles-doped polyaniline nanofiber (Au/PANI-NFs) composite was greenly prepared by in situ one-step chemical inertness of PANI-NFs with gold nanoparticles to fabricate impedance-based electrochemical biosensors. Transmission electron micrographs indicated that the gold nanoparticles were uniformly anchored along with the structure of PANI-NF surface, displaying fibrillar morphology with a ~60 nm diameter. Au/PANI-NFs-based cytosensors coated with anti-CD Ab molecules could provide biomimetic interface for multiple immunosensing of T-cell surface activation markers (CD69, CD25, and CD71). The dual signal amplification of Au nanoparticle and PANI-NFs-based electrochemical impedance spectroscopic (EIS) measurements enabled the cytosensors considerably sensitive, with a detection limit of 1×10(4) cells/ml of activated T-cells. The activation-targeted cytosensors detected early, middle and late stages for expression of activation markers CD69, CD25, and CD71 at 8 h, 24 h, and 36 h, respectively, after concanvalin A stimulation of T cells. The quantitative results consisted with those derived from flow cytometric analysis. Furthermore, activation-targeted cytosensor allowed for dynamic analysis of the immune inhibition of T-cell activation by immune regulatory drug icariin (ICA). Thus, Au/PANI-NFs-based cytosensors offer simple and fast approach for non-destructive, quantitative evaluation of T-cell activation markers, with considerable specificity, reproducibility, and low background noise.
Collapse
|
10
|
Hu C, Yang DP, Wang Z, Yu L, Zhang J, Jia N. Improved EIS Performance of an Electrochemical Cytosensor Using Three-Dimensional Architecture Au@BSA as Sensing Layer. Anal Chem 2013; 85:5200-6. [DOI: 10.1021/ac400556q] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Chenyi Hu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | | | - Ziyi Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | - Lili Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| | | | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, Life and Environmental Science College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
11
|
Macfarlane RJ, Jones MR, Senesi AJ, Young KL, Lee B, Wu J, Mirkin CA. Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew Chem Int Ed Engl 2010; 49:4589-92. [PMID: 20486143 DOI: 10.1002/anie.201000633] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Robert J Macfarlane
- Department of Chemistry, Northwestern University, 2190 Campus Drive, Evanston, IL 60201, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Macfarlane R, Jones M, Senesi A, Young K, Lee B, Wu J, Mirkin C. Establishing the Design Rules for DNA-Mediated Programmable Colloidal Crystallization. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000633] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|