1
|
Wang C, Lai Z, Huang G, Pan H. Current State of [Fe]‐Hydrogenase and Its Biomimetic Models. Chemistry 2022; 28:e202201499. [DOI: 10.1002/chem.202201499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Wang
- Chemistry and Biomedicine Innovation Center (ChemBIC) State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing P. R. China
| | - Zhenli Lai
- Key Laboratory of Development and Application of Rural Renewable Energy Biogas Institute of Ministry of Agriculture and Rural Affairs Section 4–13, Renmin South Road 610041 Chengdu P. R. China
| | - Gangfeng Huang
- Key Laboratory of Development and Application of Rural Renewable Energy Biogas Institute of Ministry of Agriculture and Rural Affairs Section 4–13, Renmin South Road 610041 Chengdu P. R. China
| | - Hui‐Jie Pan
- Chemistry and Biomedicine Innovation Center (ChemBIC) State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue 210023 Nanjing P. R. China
| |
Collapse
|
2
|
Kumar M, Ahmad S, Ali A. Catalytic Reactivity Supported by Redox-Active Ligands Framing: A Mini Review. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Schaupp S, Arriaza‐Gallardo FJ, Pan H, Kahnt J, Angelidou G, Paczia N, Costa K, Hu X, Shima S. In Vitro Biosynthesis of the [Fe]-Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors. Angew Chem Int Ed Engl 2022; 61:e202200994. [PMID: 35286742 PMCID: PMC9314073 DOI: 10.1002/anie.202200994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 02/06/2023]
Abstract
In the FeGP cofactor of [Fe]-hydrogenase, low-spin FeII is in complex with two CO ligands and a pyridinol derivative; the latter ligates the iron with a 6-acylmethyl substituent and the pyridinol nitrogen. A guanylylpyridinol derivative, 6-carboxymethyl-3,5-dimethyl-4-guanylyl-2-pyridinol (3), is produced by the decomposition of the FeGP cofactor under irradiation with UV-A/blue light and is also postulated to be a precursor of FeGP cofactor biosynthesis. HcgC and HcgB catalyze consecutive biosynthesis steps leading to 3. Here, we report an in vitro biosynthesis assay of the FeGP cofactor using the cell extract of the ΔhcgBΔhcgC strain of Methanococcus maripaludis, which does not biosynthesize 3. We chemically synthesized pyridinol precursors 1 and 2, and detected the production of the FeGP cofactor from 1, 2 and 3. These results indicated that 1, 2 and 3 are the precursors of the FeGP cofactor, and the carboxy group of 3 is converted to the acyl ligand.
Collapse
Affiliation(s)
- Sebastian Schaupp
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | | | - Hui‐jie Pan
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 33051015LausanneSwitzerland
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Georgia Angelidou
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Kyle Costa
- Department of Plant and Microbial BiologyUniversity of MinnesotaTwin CitiesSt. Paul, MNUSA
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 33051015LausanneSwitzerland
| | - Seigo Shima
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| |
Collapse
|
4
|
Schaupp S, Arriaza‐Gallardo FJ, Pan H, Kahnt J, Angelidou G, Paczia N, Costa K, Hu X, Shima S. In Vitro Biosynthesis of the [Fe]‐Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Schaupp
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | | | - Hui‐jie Pan
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Georgia Angelidou
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Kyle Costa
- Department of Plant and Microbial Biology University of Minnesota Twin Cities St. Paul, MN USA
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| |
Collapse
|
5
|
Roy BC, Ganguli K, Samim SA, Kundu S. Alkyl Phosphine Free, Metal‐Ligand Cooperative Complex Catalyzed Alcohol Dehydrogenative Coupling Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Sabuj Kundu
- Department of Chemistry IIT Kanpur Kanpur 208016, UP India
| |
Collapse
|
6
|
Watanabe T, Wagner T, Huang G, Kahnt J, Ataka K, Ermler U, Shima S. The Bacterial [Fe]-Hydrogenase Paralog HmdII Uses Tetrahydrofolate Derivatives as Substrates. Angew Chem Int Ed Engl 2019; 58:3506-3510. [PMID: 30600878 DOI: 10.1002/anie.201813465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 11/11/2022]
Abstract
[Fe]-hydrogenase (Hmd) catalyzes the reversible hydrogenation of methenyl-tetrahydromethanopterin (methenyl-H4 MPT+ ) with H2 . H4 MPT is a C1-carrier of methanogenic archaea. One bacterial genus, Desulfurobacterium, contains putative genes for the Hmd paralog, termed HmdII, and the HcgA-G proteins. The latter are required for the biosynthesis of the prosthetic group of Hmd, the iron-guanylylpyridinol (FeGP) cofactor. This finding is intriguing because Hmd and HmdII strictly use H4 MPT derivatives that are absent in most bacteria. We identified the presence of the FeGP cofactor in D. thermolithotrophum. The bacterial HmdII reconstituted with the FeGP cofactor catalyzed the hydrogenation of derivatives of tetrahydrofolate, the bacterial C1-carrier, albeit with low enzymatic activities. The crystal structures show how Hmd recognizes tetrahydrofolate derivatives. These findings have an impact on future biotechnology by identifying a bacterial Hmd paralog.
Collapse
Affiliation(s)
- Tomohiro Watanabe
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
| | - Tristan Wagner
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany.,Current address: Microbial Metabolism group, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Gangfeng Huang
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
| | - Jörg Kahnt
- Mass Spectrometry and Proteomics Unit, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany
| | - Ulrich Ermler
- Department of Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438, Frankfurt/Main, Germany
| | - Seigo Shima
- Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
| |
Collapse
|
7
|
Watanabe T, Wagner T, Huang G, Kahnt J, Ataka K, Ermler U, Shima S. The Bacterial [Fe]-Hydrogenase Paralog HmdII Uses Tetrahydrofolate Derivatives as Substrates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tomohiro Watanabe
- Microbial Protein Structure Group; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch Straße 10 35043 Marburg Germany
| | - Tristan Wagner
- Microbial Protein Structure Group; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch Straße 10 35043 Marburg Germany
- Current address: Microbial Metabolism group; Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 28359 Bremen Germany
| | - Gangfeng Huang
- Microbial Protein Structure Group; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch Straße 10 35043 Marburg Germany
| | - Jörg Kahnt
- Mass Spectrometry and Proteomics Unit; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch Straße 10 35043 Marburg Germany
| | - Kenichi Ataka
- Department of Physics; Freie Universität Berlin; 14195 Berlin Germany
| | - Ulrich Ermler
- Department of Max-Planck-Institut für Biophysik; Max-von-Laue-Straße 3 60438 Frankfurt/Main Germany
| | - Seigo Shima
- Microbial Protein Structure Group; Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch Straße 10 35043 Marburg Germany
| |
Collapse
|
8
|
Wagner T, Huang G, Ermler U, Shima S. How [Fe]-Hydrogenase from Methanothermobacter is Protected Against Light and Oxidative Stress. Angew Chem Int Ed Engl 2018; 57:15056-15059. [PMID: 30207625 DOI: 10.1002/anie.201807203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/24/2018] [Indexed: 11/09/2022]
Abstract
[Fe]-hydrogenase (Hmd) catalyzes the reversible hydrogenation of methenyltetrahydromethanopterin (methenyl-H4 MPT+ ) with H2 . Hmd contains the iron-guanylylpyridinol (FeGP) cofactor, which is sensitive to light and oxidative stress. A natural protection mechanism is reported for Hmd based on structural and biophysical data. Hmd from Methanothermobacter marburgensis (mHmd) was found in a hexameric state, where an expanded oligomerization loop is detached from the dimer core and intrudes into the active site of a neighboring dimer. An aspartic acid residue from the loop ligates to FeII of the FeGP cofactor and thus blocks the postulated H2 -binding site. In solution, this enzyme is in a hexamer-to-dimer equilibrium. Lower enzyme concentrations, and the presence of methenyl-H4 MPT+ , shift the equilibrium toward the active dimer side. At higher enzyme concentrations-as present in the cell-the enzyme is predominantly in the inactive hexameric state and is thereby protected against light and oxidative stress.
Collapse
Affiliation(s)
- Tristan Wagner
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
| | - Gangfeng Huang
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438, Frankfurt/Main, Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
| |
Collapse
|
9
|
Wagner T, Huang G, Ermler U, Shima S. How [Fe]‐Hydrogenase from
Methanothermobacter
is Protected Against Light and Oxidative Stress. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tristan Wagner
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch Straße 10 35043 Marburg Germany
| | - Gangfeng Huang
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch Straße 10 35043 Marburg Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt/Main Germany
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch Straße 10 35043 Marburg Germany
| |
Collapse
|
10
|
Huang G, Wagner T, Ermler U, Bill E, Ataka K, Shima S. Dioxygen Sensitivity of [Fe]-Hydrogenase in the Presence of Reducing Substrates. Angew Chem Int Ed Engl 2018; 57:4917-4920. [PMID: 29462510 DOI: 10.1002/anie.201712293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 01/27/2023]
Abstract
Mono-iron hydrogenase ([Fe]-hydrogenase) reversibly catalyzes the transfer of a hydride ion from H2 to methenyltetrahydromethanopterin (methenyl-H4 MPT+ ) to form methylene-H4 MPT. Its iron guanylylpyridinol (FeGP) cofactor plays a key role in H2 activation. Evidence is presented for O2 sensitivity of [Fe]-hydrogenase under turnover conditions in the presence of reducing substrates, methylene-H4 MPT or methenyl-H4 MPT+ /H2 . Only then, H2 O2 is generated, which decomposes the FeGP cofactor; as demonstrated by spectroscopic analyses and the crystal structure of the deactivated enzyme. O2 reduction to H2 O2 requires a reductant, which can be a catalytic intermediate transiently formed during the [Fe]-hydrogenase reaction. The most probable candidate is an iron hydride species; its presence has already been predicted by theoretical studies of the catalytic reaction. The findings support predictions because the same type of reduction reaction is described for ruthenium hydride complexes that hydrogenate polar compounds.
Collapse
Affiliation(s)
- Gangfeng Huang
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Tristan Wagner
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438, Frankfurt/Main, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, 45470, Mülheim, Germany
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Berlin, 14195, Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| |
Collapse
|
11
|
Huang G, Wagner T, Ermler U, Bill E, Ataka K, Shima S. Dioxygen Sensitivity of [Fe]-Hydrogenase in the Presence of Reducing Substrates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gangfeng Huang
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Tristan Wagner
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik; Max-von-Laue-Straße 3 60438 Frankfurt/Main Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion; 45470 Mülheim Germany
| | - Kenichi Ataka
- Department of Physics; Freie Universität Berlin; Berlin 14195 Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| |
Collapse
|
12
|
Rigid scaffolds for the design of molecular catalysts and biomimetic active sites: A case study of anthracene-based ligands for modeling mono-iron hydrogenase (Hmd). Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Fujishiro T, Bai L, Xu T, Xie X, Schick M, Kahnt J, Rother M, Hu X, Ermler U, Shima S. Identification of HcgC as a SAM-Dependent Pyridinol Methyltransferase in [Fe]-Hydrogenase Cofactor Biosynthesis. Angew Chem Int Ed Engl 2016; 55:9648-51. [PMID: 27391308 DOI: 10.1002/anie.201604352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/09/2022]
Abstract
Previous retrosynthetic and isotope-labeling studies have indicated that biosynthesis of the iron guanylylpyridinol (FeGP) cofactor of [Fe]-hydrogenase requires a methyltransferase. This hypothetical enzyme covalently attaches the methyl group at the 3-position of the pyridinol ring. We describe the identification of HcgC, a gene product of the hcgA-G cluster responsible for FeGP cofactor biosynthesis. It acts as an S-adenosylmethionine (SAM)-dependent methyltransferase, based on the crystal structures of HcgC and the HcgC/SAM and HcgC/S-adenosylhomocysteine (SAH) complexes. The pyridinol substrate, 6-carboxymethyl-5-methyl-4-hydroxy-2-pyridinol, was predicted based on properties of the conserved binding pocket and substrate docking simulations. For verification, the assumed substrate was synthesized and used in a kinetic assay. Mass spectrometry and NMR analysis revealed 6-carboxymethyl-3,5-dimethyl-4-hydroxy-2-pyridinol as the reaction product, which confirmed the function of HcgC.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany.,Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama, 338-8570, Japan
| | - Liping Bai
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Tao Xu
- Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| | - Xiulan Xie
- Department of Chemistry, Philipps Universität Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - Michael Schick
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Michael Rother
- Institut für Mikrobiologie, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xile Hu
- Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438, Frankfurt/Main, Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany. .,PRESTO, Japan, Science and Technology Agency, JST, Saitama, 332-0012, Japan.
| |
Collapse
|
14
|
Fujishiro T, Bai L, Xu T, Xie X, Schick M, Kahnt J, Rother M, Hu X, Ermler U, Shima S. Identification of HcgC as a SAM-Dependent Pyridinol Methyltransferase in [Fe]-Hydrogenase Cofactor Biosynthesis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Takashi Fujishiro
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering; Saitama University; Shimo-ohkubo 255 Sakura-ku Saitama 338-8570 Japan
| | - Liping Bai
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Tao Xu
- Institute of Chemical Science and Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL); ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Xiulan Xie
- Department of Chemistry; Philipps Universität Marburg; Hans-Meerwein-Straße 35032 Marburg Germany
| | - Michael Schick
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Jörg Kahnt
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Michael Rother
- Institut für Mikrobiologie; Technische Universität Dresden; 01062 Dresden Germany
| | - Xile Hu
- Institute of Chemical Science and Engineering; Ecole Polytechnique Fédérale de Lausanne (EPFL); ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Ulrich Ermler
- Max-Planck-Institut für Biophysik; Max-von-Laue-Straße 3 60438 Frankfurt/Main Germany
| | - Seigo Shima
- Max-Planck-Institut für terrestrische Mikrobiologie; Karl-von-Frisch-Straße 10 35043 Marburg Germany
- PRESTO, Japan, Science and Technology Agency, JST; Saitama 332-0012 Japan
| |
Collapse
|
15
|
Hidese R, Ataka K, Bill E, Shima S. Cu I and H 2 O 2 Inactivate and Fe II Inhibits [Fe]-Hydrogenase at Very Low Concentrations. Chembiochem 2015; 16:1861-1865. [PMID: 26136368 DOI: 10.1002/cbic.201500318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/09/2022]
Abstract
[Fe]-Hydrogenase (Hmd) catalyzes reversible hydride transfer from H2 . It harbors an iron-guanylylpyridinol as a cofactor with an FeII that is ligated to one thiolate, two COs, one acyl-C, one pyridinol-N, and solvent. Here, we report that CuI and H2 O2 inactivate Hmd (half-maximal rates at 1 μM CuI and 20 μM H2 O2 ) and that FeII inhibits the enzyme with very high affinity (Ki =40 nM). Infrared and EPR studies together with competitive inhibition studies with isocyanide indicated that CuI exerts its inhibitory effect most probably by binding to the active site iron-thiolate ligand. Using the same methods, it was found that H2 O2 binds to the active-site iron at the solvent-binding site and oxidizes FeII to FeIII . Also it was shown that FeII reversibly binds away from the active site iron, with binding being competitive to the organic hydride acceptor; this inhibition is specific for FeII and is reminiscent of that for the [FeFe]-hydrogenase second iron, which specifically interacts with H2 .
Collapse
Affiliation(s)
- Ryota Hidese
- Max-Planck-Institute für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse 10, 35043 Marburg (Germany)
| | - Kenichi Ataka
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin (Germany)
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany)
| | - Seigo Shima
- Max-Planck-Institute für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse 10, 35043 Marburg (Germany).,PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012 (Japan)
| |
Collapse
|
16
|
Hedegård ED, Kongsted J, Ryde U. Multiscale Modeling of the Active Site of [Fe] Hydrogenase: The H 2Binding Site in Open and Closed Protein Conformations. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Hedegård ED, Kongsted J, Ryde U. Multiscale Modeling of the Active Site of [Fe] Hydrogenase: The H2Binding Site in Open and Closed Protein Conformations. Angew Chem Int Ed Engl 2015; 54:6246-50. [DOI: 10.1002/anie.201501737] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 11/07/2022]
|
18
|
Murray KA, Wodrich MD, Hu X, Corminboeuf C. Toward functional type III [Fe]-hydrogenase biomimics for H2 activation: insights from computation. Chemistry 2015; 21:3987-96. [PMID: 25649221 DOI: 10.1002/chem.201405619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/06/2022]
Abstract
The chemistry of [Fe]-hydrogenase has attracted significant interest due to its ability to activate molecular hydrogen. The intriguing properties of this enzyme have prompted the synthesis of numerous small molecule mimics aimed at activating H2. Despite considerable effort, a majority of these compounds remain nonfunctional for hydrogenation reactions. By using a recently synthesized model as an entry point, seven biomimetic complexes have been examined through DFT computations to probe the influence of ligand environment on the ability of a mimic to bind and split H2. One mimic, featuring a bidentate diphosphine group incorporating an internal nitrogen base, was found to have particularly attractive energetics, prompting a study of the role played by the proton/hydride acceptor necessary to complete the catalytic cycle. Computations revealed an experimentally accessible energetic pathway involving a benzaldehyde proton/hydride acceptor and the most promising catalyst.
Collapse
Affiliation(s)
- Kevin A Murray
- Laboratory for Computational Molecular Design, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | | | | | | |
Collapse
|
19
|
Tai H, Nishikawa K, Suzuki M, Higuchi Y, Hirota S. Control of the Transition between Ni-C and Ni-SIaStates by the Redox State of the Proximal FeS Cluster in the Catalytic Cycle of [NiFe] Hydrogenase. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Tai H, Nishikawa K, Suzuki M, Higuchi Y, Hirota S. Control of the transition between Ni-C and Ni-SI(a) states by the redox state of the proximal Fe-S cluster in the catalytic cycle of [NiFe] hydrogenase. Angew Chem Int Ed Engl 2014; 53:13817-20. [PMID: 25297065 DOI: 10.1002/anie.201408552] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/16/2014] [Indexed: 11/08/2022]
Abstract
[NiFe] hydrogenase catalyzes the reversible cleavage of H2. The electrons produced by the H2 cleavage pass through three Fe-S clusters in [NiFe] hydrogenase to its redox partner. It has been reported that the Ni-SI(a), Ni-C, and Ni-R states of [NiFe] hydrogenase are involved in the catalytic cycle, although the mechanism and regulation of the transition between the Ni-C and Ni-SI(a) states remain unrevealed. In this study, the FT-IR spectra under light irradiation at 138-198 K show that the Ni-L state of [NiFe] hydrogenase is an intermediate between the transition of the Ni-C and Ni-SI(a) states. The transition of the Ni-C state to the Ni-SI(a) state occurred when the proximal [Fe4S4]p(2+/+) cluster was oxidized, but not when it was reduced. These results show that the catalytic cycle of [NiFe] hydrogenase is controlled by the redox state of its [Fe4S4]p(2+/+) cluster, which may function as a gate for the electron flow from the NiFe active site to the redox partner.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); CREST, JST Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)
| | | | | | | | | |
Collapse
|
21
|
Hu B, Chen D, Hu X. Synthesis and Reactivity of Mononuclear Iron Models of [Fe]-Hydrogenase that Contain an Acylmethylpyridinol Ligand. Chemistry 2014; 20:1677-82. [DOI: 10.1002/chem.201304290] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Indexed: 11/06/2022]
|
22
|
Fujishiro T, Tamura H, Schick M, Kahnt J, Xie X, Ermler U, Shima S. Identification of the HcgB Enzyme in [Fe]-Hydrogenase-Cofactor Biosynthesis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306745] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Fujishiro T, Tamura H, Schick M, Kahnt J, Xie X, Ermler U, Shima S. Identification of the HcgB enzyme in [Fe]-hydrogenase-cofactor biosynthesis. Angew Chem Int Ed Engl 2013; 52:12555-8. [PMID: 24249552 DOI: 10.1002/anie.201306745] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/23/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Takashi Fujishiro
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse 10, 35043 Marburg (Germany) http://www.mpi-marburg.mpg.de/
| | | | | | | | | | | | | |
Collapse
|
24
|
Tamura H, Salomone-Stagni M, Fujishiro T, Warkentin E, Meyer-Klaucke W, Ermler U, Shima S. Crystal Structures of [Fe]-Hydrogenase in Complex with Inhibitory Isocyanides: Implications for the H2-Activation Site. Angew Chem Int Ed Engl 2013; 52:9656-9. [DOI: 10.1002/anie.201305089] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Indexed: 01/08/2023]
|
25
|
Crystal Structures of [Fe]-Hydrogenase in Complex with Inhibitory Isocyanides: Implications for the H2-Activation Site. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Schultz KM, Chen D, Hu X. [Fe]-Hydrogenase and Models that Contain IronAcyl Ligation. Chem Asian J 2013; 8:1068-75. [DOI: 10.1002/asia.201300232] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Indexed: 11/06/2022]
|
27
|
Wodrich MD, Hu X. Electronic Elements Governing the Binding of Small Molecules to a [Fe]-Hydrogenase Mimic. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Hu B, Chen D, Hu X. Reversible Dimerization of Mononuclear Models of [Fe]-Hydrogenase. Chemistry 2013; 19:6221-4. [DOI: 10.1002/chem.201300495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Indexed: 11/12/2022]
|
29
|
Hu B, Chen D, Hu X. A Pyridinol Acyl Cofactor in the Active Site of [Fe]-hydrogenase Evidenced by the Reactivity of Model Complexes. Chemistry 2012; 18:11528-30. [DOI: 10.1002/chem.201201954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Indexed: 11/11/2022]
|
30
|
Chen D, Scopelliti R, Hu X. Reversible Protonation of a Thiolate Ligand in an [Fe]-Hydrogenase Model Complex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Chen D, Scopelliti R, Hu X. Reversible Protonation of a Thiolate Ligand in an [Fe]-Hydrogenase Model Complex. Angew Chem Int Ed Engl 2012; 51:1919-21. [DOI: 10.1002/anie.201107634] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Indexed: 11/07/2022]
|
32
|
Chen D, Scopelliti R, Hu X. A Five-Coordinate Iron Center in the Active Site of [Fe]-Hydrogenase: Hints from a Model Study. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Chen D, Scopelliti R, Hu X. A Five-Coordinate Iron Center in the Active Site of [Fe]-Hydrogenase: Hints from a Model Study. Angew Chem Int Ed Engl 2011; 50:5671-3. [DOI: 10.1002/anie.201100201] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/24/2011] [Indexed: 11/07/2022]
|
34
|
Stiebritz MT, Finkelmann AR, Reiher M. Oxygen Coordination to the Active Site of Hmd in Relation to [FeFe] Hydrogenase. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Darensbourg MY, Weigand W. Sulfoxygenation of Active Site Models of [NiFe] and [FeFe] Hydrogenases – A Commentary on Possible Chemical Models of Hydrogenase Enzyme Oxygen Sensitivity. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001148] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich‐Schiller‐Universität Jena, August‐Bebel‐Straße 2, 07743 Jena, Germany
| |
Collapse
|
36
|
Swanson KD, Duffus BR, Beard TE, Peters JW, Broderick JB. Cyanide and Carbon Monoxide Ligand Formation in Hydrogenase Biosynthesis. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin D. Swanson
- Department of Chemistry & Biochemistry, AstrobiologyBiogeocatalysis Research Center, Montana State University Bozeman, MT 59717, USA, Fax: +1‐406‐994‐7470
| | - Benjamin R. Duffus
- Department of Chemistry & Biochemistry, AstrobiologyBiogeocatalysis Research Center, Montana State University Bozeman, MT 59717, USA, Fax: +1‐406‐994‐7470
| | - Trevor E. Beard
- Department of Chemistry & Biochemistry, AstrobiologyBiogeocatalysis Research Center, Montana State University Bozeman, MT 59717, USA, Fax: +1‐406‐994‐7470
| | - John W. Peters
- Department of Chemistry & Biochemistry, AstrobiologyBiogeocatalysis Research Center, Montana State University Bozeman, MT 59717, USA, Fax: +1‐406‐994‐7470
| | - Joan B. Broderick
- Department of Chemistry & Biochemistry, AstrobiologyBiogeocatalysis Research Center, Montana State University Bozeman, MT 59717, USA, Fax: +1‐406‐994‐7470
| |
Collapse
|
37
|
Silakov A, Reijerse EJ, Lubitz W. Unraveling the Electronic Properties of the Photoinduced States of the H-Cluster in the [FeFe] Hydrogenase from D. desulfuricans. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Ohki Y, Tatsumi K. Thiolate‐Bridged Iron–Nickel Models for the Active Site of [NiFe] Hydrogenase. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201001087] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science, and Research Center for Materials Science, Nagoya University, Furo‐cho, Chikusa‐ku, 464–8602, Nagoya, Japan, Fax: +81‐52‐789‐2943
| | - Kazuyuki Tatsumi
- Department of Chemistry, Graduate School of Science, and Research Center for Materials Science, Nagoya University, Furo‐cho, Chikusa‐ku, 464–8602, Nagoya, Japan, Fax: +81‐52‐789‐2943
| |
Collapse
|
39
|
Shima S, Vogt S, Göbels A, Bill E. Iron-Chromophore Circular Dichroism of [Fe]-Hydrogenase: The Conformational Change Required for H2 Activation. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201006255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Shima S, Vogt S, Göbels A, Bill E. Iron-Chromophore Circular Dichroism of [Fe]-Hydrogenase: The Conformational Change Required for H2 Activation. Angew Chem Int Ed Engl 2010; 49:9917-21. [DOI: 10.1002/anie.201006255] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Wright JA, Turrell PJ, Pickett CJ. The Third Hydrogenase: More Natural Organometallics. Organometallics 2010. [DOI: 10.1021/om1008567] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph A. Wright
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Peter J. Turrell
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Christopher J. Pickett
- Energy Materials Laboratory, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
42
|
Chen D, Scopelliti R, Hu X. [Fe]-Hydrogenase Models Featuring Acylmethylpyridinyl Ligands. Angew Chem Int Ed Engl 2010; 49:7512-5. [DOI: 10.1002/anie.201004579] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Chen D, Scopelliti R, Hu X. [Fe]-Hydrogenase Models Featuring Acylmethylpyridinyl Ligands. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004579] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Tanino S, Ohki Y, Tatsumi K. An Iron(II) Carbonyl Thiolato Complex Bearing 2-Methoxy-Pyridine: A Structural Model of the Active Site of [Fe] Hydrogenase. Chem Asian J 2010; 5:1962-4. [DOI: 10.1002/asia.201000408] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
|