1
|
Szkaradek K, Góra RW. Theoretical insight into photodeactivation mechanisms of adenine-uracil and adenine-thymine nucleobase pairs. Phys Chem Chem Phys 2024; 26:27807-27816. [PMID: 39470622 DOI: 10.1039/d4cp02817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this work, several plausible intra- and intermolecular photoinduced processes of the Watson-Crick base pairs of adenine with uracil (A-U) or thymine (A-T) according to the results of spin component scaling variant of algebraic diagrammatic construction up to the second order [SCS-ADC(2)] calculations are discussed. Although widely explored, these systems lack complete characterization of possible intramolecular relaxation channels perturbed by intermolecular interactions. In particular, we address the still open debate on photodeactivation via purine-ring puckering at the C2 or C6-atom position of adenine. We also show that the presence of low-lying, long-lived 1nπ* states can be a significant factor in hindering relaxation via an electron-driven proton transfer process, as the population of these states can lead to an efficient intersystem crossing to a triplet manifold, the estimated rate of which is 1.6 × 1010 s-1 which exceeds the corresponding internal conversion to the ground state by an order of magnitude. Additionally, the SCS variant of the ADC(2) method is shown to provide a more balanced description of valence and charge-transfer excited states.
Collapse
Affiliation(s)
- Kinga Szkaradek
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Robert W Góra
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
2
|
Huang H, Peng J, Zhang Y, Gu FL, Lan Z, Xu C. The development of the QM/MM interface and its application for the on-the-fly QM/MM nonadiabatic dynamics in JADE package: Theory, implementation, and applications. J Chem Phys 2024; 160:234101. [PMID: 38884395 DOI: 10.1063/5.0215036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Understanding the nonadiabatic dynamics of complex systems is a challenging task in computational photochemistry. Herein, we present an efficient and user-friendly quantum mechanics/molecular mechanics (QM/MM) interface to run on-the-fly nonadiabatic dynamics. Currently, this interface consists of an independent set of codes designed for general-purpose use. Herein, we demonstrate the ability and feasibility of the QM/MM interface by integrating it with our long-term developed JADE package. Tailored to handle nonadiabatic processes in various complex systems, especially condensed phases and protein environments, we delve into the theories, implementations, and applications of on-the-fly QM/MM nonadiabatic dynamics. The QM/MM approach is established within the framework of the additive QM/MM scheme, employing electrostatic embedding, link-atom inclusion, and charge-redistribution schemes to treat the QM/MM boundary. Trajectory surface-hopping dynamics are facilitated using the fewest switches algorithm, encompassing classical and quantum treatments for nuclear and electronic motions, respectively. Finally, we report simulations of nonadiabatic dynamics for two typical systems: azomethane in water and the retinal chromophore PSB3 in a protein environment. Our results not only illustrate the power of the QM/MM program but also reveal the important roles of environmental factors in nonadiabatic processes.
Collapse
Affiliation(s)
- Haiyi Huang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yulin Zhang
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
3
|
Mai S, González L. Molecular Photochemistry: Recent Developments in Theory. Angew Chem Int Ed Engl 2020; 59:16832-16846. [PMID: 32052547 PMCID: PMC7540682 DOI: 10.1002/anie.201916381] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Photochemistry is a fascinating branch of chemistry that is concerned with molecules and light. However, the importance of simulating light-induced processes is reflected also in fields as diverse as biology, material science, and medicine. This Minireview highlights recent progress achieved in theoretical chemistry to calculate electronically excited states of molecules and simulate their photoinduced dynamics, with the aim of reaching experimental accuracy. We focus on emergent methods and give selected examples that illustrate the progress in recent years towards predicting complex electronic structures with strong correlation, calculations on large molecules, describing multichromophoric systems, and simulating non-adiabatic molecular dynamics over long time scales, for molecules in the gas phase or in complex biological environments.
Collapse
Affiliation(s)
- Sebastian Mai
- Photonics InstituteVienna University of TechnologyGusshausstrasse 27–291040ViennaAustria
| | - Leticia González
- Institute of Theoretical ChemistryFaculty of ChemistryUniversity of ViennaWähringer Strasse 171090ViennaAustria
| |
Collapse
|
4
|
Mai S, González L. Molekulare Photochemie: Moderne Entwicklungen in der theoretischen Chemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Mai
- Institut für Photonik Technische Universität Wien Gußhausstraße 27–29 1040 Wien Österreich
| | - Leticia González
- Institut für theoretische Chemie Fakultät für Chemie Universität Wien Währinger Straße 17 1090 Wien Österreich
| |
Collapse
|
5
|
Francés‐Monerris A, Carmona‐García J, Acuña AU, Dávalos JZ, Cuevas CA, Kinnison DE, Francisco JS, Saiz‐Lopez A, Roca‐Sanjuán D. Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Antonio Francés‐Monerris
- Université de LorraineCNRS, LPCT 54000 Nancy France
- Departamento de Química FísicaUniversitat de València 46100 Burjassot Spain
| | | | - A. Ulises Acuña
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | - Juan Z. Dávalos
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | - Carlos A. Cuevas
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | | | - Joseph S. Francisco
- Department of Earth and Environmental Sciences and Department of ChemistryUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Alfonso Saiz‐Lopez
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | | |
Collapse
|
6
|
Francés‐Monerris A, Carmona‐García J, Acuña AU, Dávalos JZ, Cuevas CA, Kinnison DE, Francisco JS, Saiz‐Lopez A, Roca‐Sanjuán D. Photodissociation Mechanisms of Major Mercury(II) Species in the Atmospheric Chemical Cycle of Mercury. Angew Chem Int Ed Engl 2020; 59:7605-7610. [DOI: 10.1002/anie.201915656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Antonio Francés‐Monerris
- Université de LorraineCNRS, LPCT 54000 Nancy France
- Departamento de Química FísicaUniversitat de València 46100 Burjassot Spain
| | | | - A. Ulises Acuña
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | - Juan Z. Dávalos
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | - Carlos A. Cuevas
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | | | - Joseph S. Francisco
- Department of Earth and Environmental Sciences and Department of ChemistryUniversity of Pennsylvania Philadelphia PA 19104 USA
| | - Alfonso Saiz‐Lopez
- Department of Atmospheric Chemistry and ClimateInstitute of Physical Chemistry RocasolanoCSIC 28006 Madrid Spain
| | | |
Collapse
|
7
|
Li Q, Giussani A, Segarra-Martí J, Nenov A, Rivalta I, Voityuk AA, Mukamel S, Roca-Sanjuán D, Garavelli M, Blancafort L. Multiple Decay Mechanisms and 2D-UV Spectroscopic Fingerprints of Singlet Excited Solvated Adenine-Uracil Monophosphate. Chemistry 2016; 22:7497-507. [PMID: 27113273 PMCID: PMC5021121 DOI: 10.1002/chem.201505086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 02/04/2023]
Abstract
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D-UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine (1) La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine (1) Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter-base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long-lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the (1) Lb , S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D-UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm(-1) in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D-UV spectroscopy to disentangle the photophysics of multichromophoric systems.
Collapse
Affiliation(s)
- Quansong Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Ivan Rivalta
- Univ Lyon, >Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France
| | - Alexander A Voityuk
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilvi, 17071, Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California, 92697-2025, USA
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P. O. Box 22085, 46071, Valencia, Spain
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.
- Univ Lyon, >Ens de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 69342, Lyon, France.
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilvi, 17071, Girona, Spain.
| |
Collapse
|
8
|
Wu D, Guo WW, Liu XY, Cui G. Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission. Chemphyschem 2016; 17:2340-7. [DOI: 10.1002/cphc.201600386] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Dan Wu
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Wei-Wei Guo
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Xiang-Yang Liu
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry; Ministry of Education; College of Chemistry; Beijing Normal University; Beijing 100875 China
| |
Collapse
|
9
|
Zhang Q, Chen X, Cui G, Fang WH, Thiel W. Concerted Asynchronous Hula-Twist Photoisomerization in the S65T/H148D Mutant of Green Fluorescent Protein. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Zhang Q, Chen X, Cui G, Fang WH, Thiel W. Concerted Asynchronous Hula-Twist Photoisomerization in the S65T/H148D Mutant of Green Fluorescent Protein. Angew Chem Int Ed Engl 2014; 53:8649-53. [DOI: 10.1002/anie.201405303] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Indexed: 01/24/2023]
|
11
|
Reetz MT. One Hundred Years of the Max-Planck-Institut für Kohlenforschung. Angew Chem Int Ed Engl 2014; 53:8562-86. [DOI: 10.1002/anie.201403217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Indexed: 12/27/2022]
|
12
|
|
13
|
Banyasz A, Gustavsson T, Onidas D, Changenet-Barret P, Markovitsi D, Improta R. Multi-Pathway Excited State Relaxation of Adenine Oligomers in Aqueous Solution: A Joint Theoretical and Experimental Study. Chemistry 2013; 19:3762-74. [DOI: 10.1002/chem.201202741] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/11/2012] [Indexed: 11/09/2022]
|
14
|
Cui G, Thiel W. Photoinduced Ultrafast Wolff Rearrangement: A Non-Adiabatic Dynamics Perspective. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207628] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Cui G, Thiel W. Photoinduced ultrafast Wolff rearrangement: a non-adiabatic dynamics perspective. Angew Chem Int Ed Engl 2012; 52:433-6. [PMID: 23212961 DOI: 10.1002/anie.201207628] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/01/2012] [Indexed: 11/10/2022]
Abstract
One reaction, two routes: full-dimensional non-adiabatic dynamics simulations shed light on the ultrafast photoinduced Wolff rearrangement in an α-diazocarbonyl compound. The trajectories show both concerted asynchronous and stepwise processes leading to the corresponding ketene.
Collapse
Affiliation(s)
- Ganglong Cui
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | |
Collapse
|
16
|
EUCheMS Lectureships: D. Milstein und N. Martín / European Sustainable Chemistry Award: Marc Taillefer / Chemistry Challenge Awards: R. M. Waymouth, J. L. Hedrick und G. W. Coates / Liebig-Denkmünze: W. Thiel / Kurz notiert: H. Schwarz. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
EUCheMS Lectureships: D. Milstein and N. Martín / European Sustainable Chemistry Energy Award: Marc Taillefer / Presidential Green Chemistry Challenge Awards: R. M. Waymouth, J. L. Hedrick, and G. W. Coates / Liebig Memorial Medal: W. Thiel / Also in the. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/anie.201206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Lu Y, Lan Z, Thiel W. Monomeric adenine decay dynamics influenced by the DNA environment. J Comput Chem 2012; 33:1225-35. [DOI: 10.1002/jcc.22952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/09/2012] [Accepted: 01/16/2012] [Indexed: 01/25/2023]
|
19
|
Improta R, Barone V. Interplay between “Neutral” and “Charge-Transfer” Excimers Rules the Excited State Decay in Adenine-Rich Polynucleotides. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201104382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Improta R, Barone V. Interplay between "neutral" and "charge-transfer" excimers rules the excited state decay in adenine-rich polynucleotides. Angew Chem Int Ed Engl 2011; 50:12016-9. [PMID: 22012744 DOI: 10.1002/anie.201104382] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/23/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture Biommagini (IBB-CNR), Via Mezzocannone 16, 80136, Napoli, Italy.
| | | |
Collapse
|