1
|
Arabuli KV, Kopoleva E, Akenoun A, Mikhailova LV, Petrova E, Muslimov AR, Senichkina DA, Tsymbal S, Shakirova AI, Ignatiev AI, Lepik KV, Zyuzin MV. On-chip fabrication of calcium carbonate nanoparticles loaded with various compounds using microfluidic approach. BIOMATERIALS ADVANCES 2024; 161:213904. [PMID: 38805763 DOI: 10.1016/j.bioadv.2024.213904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.
Collapse
Affiliation(s)
- Konstantin V Arabuli
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Kopoleva
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Anas Akenoun
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Lidia V Mikhailova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Petrova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Dina A Senichkina
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Sergey Tsymbal
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg 197101, Russian Federation
| | - Alena I Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Alexander I Ignatiev
- Research and Educational Centre of Photonics and Optoinformatics, ITMO University, Saint-Petersburg 199034, Russian Federation
| | - Kirill V Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation; Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China.
| |
Collapse
|
2
|
Martins SA, Costa RR, Brito A, Reis RL, Alves NM, Pashkuleva I, Soares da Costa D. Multifunctional calcium-based nanocarriers for synergistic treatment of triple-negative breast cancer. J Colloid Interface Sci 2024; 674:500-512. [PMID: 38943911 DOI: 10.1016/j.jcis.2024.06.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Targeted breast cancer therapies hold the potential to improve the efficiency of drug delivery to the pathology site without impacting the viability and function of healthy cells. Herein, we developed multifunctional nanocarriers that target simultaneously several downstream signaling processes in triple negative breast cancer cells. The system comprises pH sensitive CaCO3 nanoparticles (NPs) as carriers of the anticancer drug doxorubicin (DOX). The NPs were coated in a layer-by-layer (LbL) fashion using poly-l-lysine and hyaluronic acid to target receptors overexpressed in breast cancer (e.g. CD44, RHAMM). Spheroids of the triple-negative Hs578T cell line were used as a 3D model to assess the therapeutic potential of this system. Our results showed that the NPs act via a synergistic mechanism that combines Ca2+ overload causing cell calcification and DNA damage by DOX. The LbL coating was crucial for the protection of the healthy cells, i.e. it provides NPs with targeting capacity. The overall data suggests that the LbL-coated NPs loaded with DOX hold great potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sara A Martins
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui R Costa
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Alexandra Brito
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Saveleva MS, Verkhovskii RA, Demina PA, Surkov YI, Anisimov RA, Prikhozhdenko ES, Pidenko PS, Serebryakova IA, Zaytsev SM, Tuchin VV, Svenskaya YI. Biodegradable calcium carbonate carriers for the topical delivery of clobetasol propionate. J Mater Chem B 2024; 12:4867-4881. [PMID: 38666451 DOI: 10.1039/d4tb00303a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Inflammatory dermatoses represent a global problem with increasing prevalence and recurrence among the world population. Topical glucocorticoids (GCs) are the most commonly used anti-inflammatory drugs in dermatology due to a wide range of their therapeutic actions, which, however, have numerous local and systemic side effects. Hence, there is a growing need to create new delivery systems for GCs, ensuring the drug localization in the pathological site, thus increasing the effectiveness of therapy and lowering the risk of side effects. Here, we propose a novel topical particulate formulation for the GC clobetasol propionate (CP), based on the use of porous calcium carbonate (CaCO3) carriers in the vaterite crystalline form. The designed carriers contain a substantially higher CP amount than conventional dosage forms used in clinics (4.5% w/w vs. 0.05% w/w) and displayed a good biocompatibility and effective cellular uptake when studied in fibroblasts in vitro. Hair follicles represent an important reservoir for the GC accumulation in skin and house the targets for its action. In this study, we demonstrated successful delivery of the CP-loaded carriers (CP-CaCO3) into the hair follicles of rats in vivo using optical coherent tomography (OCT). Importantly, the OCT monitoring revealed the gradual intrafollicular degradation of the carriers within 168 h with the most abundant follicle filling occurring within the first 48 h. Biodegradability makes the proposed system especially promising when searching for new CP formulations with improved safety and release profile. Our findings evidenced the great potential of the CaCO3 carriers in improving the dermal bioavailability of this poorly water-soluble GC.
Collapse
Affiliation(s)
- Mariia S Saveleva
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
| | | | - Polina A Demina
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
| | - Yury I Surkov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Roman A Anisimov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Ekaterina S Prikhozhdenko
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Pavel S Pidenko
- Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| | | | - Sergey M Zaytsev
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Valery V Tuchin
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
- Institute of Physics, Saratov State University, 410012 Saratov, Russia
| | - Yulia I Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia.
| |
Collapse
|
4
|
Chen Z, Yuan C, Ye Y, Lu B, Hu E, Lu F, Yu K, Xie R, Lan G. Dual-targeting fucoidan-based microvesicle for arterial thrombolysis and re-occlusion inhibition. Carbohydr Polym 2024; 328:121703. [PMID: 38220339 DOI: 10.1016/j.carbpol.2023.121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Arterial thrombosis is a critical thrombotic disease that poses a significant threat to human health. However, the existing clinical treatment of arterial thrombosis lacks effective targeting and precise drug release capability. In this study, we developed a system for targeted delivery and on-demand release in arterial thrombosis treatment. The carrier was constructed using chitosan (CS) and fucoidan (Fu) through layer-by-layer assembly, with subsequent surface modification using cRGD peptide. Upon encapsulation of urokinase-type plasminogen activator (uPA), the resulting therapeutic drug delivery system, uPA-CS/Fu@cRGD, demonstrated dual-targeting abilities towards P-selectin and αIIbβ3, as well as pH and platelet-responsive release properties. Importantly, we have demonstrated that the dual targeting effect exhibits higher targeting efficiency at shear rates simulating thrombosed arterial conditions (1800 s-1) compared to single targeting for the first time. In the mouse common iliac artery model, uPA-CS/Fu@cRGD exhibited great thrombolytic capability while promoting the down-regulation of coagulation factors (FXa and PAI-1) and inflammatory factors (TNF-α and IL-6), thus improving the thrombus microenvironment and exerting potential in preventing re-occlusion. Our dual-target and dual-responsive, fucoidan-based macrovesicle represent a promising platform for advanced drug target delivery applications, with potential to prevent coagulation tendencies as well as improving thrombolytic and reducing the risk of re-occlusion.
Collapse
Affiliation(s)
- Zhechang Chen
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Caijie Yuan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Yaxin Ye
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria.
| | - Guangqian Lan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
5
|
Ermakov AV, Chapek SV, Lengert EV, Konarev PV, Volkov VV, Artemov VV, Soldatov MA, Trushina DB. Microfluidically Assisted Synthesis of Calcium Carbonate Submicron Particles with Improved Loading Properties. MICROMACHINES 2023; 15:16. [PMID: 38276844 PMCID: PMC10818696 DOI: 10.3390/mi15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles. The design of the chip allowed for the precise manipulation of reaction parameters, resulting in improved porosity while maintaining an efficient synthesis rate. The pore size distribution within calcium carbonate particles was estimated via small-angle X-ray scattering. This study showed that the high porosity and reduced size of the particles facilitated the higher loading of a model peptide: 16 vs. 9 mass.% for the particles synthesized in a microfluidic device and in bulk, correspondingly. The biosafety of the developed particles in the concentration range of 0.08-0.8 mg per plate was established by the results of the cytotoxicity study using mouse fibroblasts. This innovative approach of microfluidically assisted synthesis provides a promising avenue for future research in the field of particle synthesis and drug delivery systems.
Collapse
Affiliation(s)
- Alexey V. Ermakov
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
| | - Sergei V. Chapek
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; (S.V.C.); (M.A.S.)
| | - Ekaterina V. Lengert
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
| | - Petr V. Konarev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Vladimir V. Volkov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Vladimir V. Artemov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Mikhail A. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; (S.V.C.); (M.A.S.)
| | - Daria B. Trushina
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| |
Collapse
|
6
|
Svenskaya Y, Pallaeva T. Exploiting Benefits of Vaterite Metastability to Design Degradable Systems for Biomedical Applications. Pharmaceutics 2023; 15:2574. [PMID: 38004553 PMCID: PMC10674703 DOI: 10.3390/pharmaceutics15112574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023] Open
Abstract
The widespread application of calcium carbonate is determined by its high availability in nature and simplicity of synthesis in laboratory conditions. Moreover, calcium carbonate possesses highly attractive physicochemical properties that make it suitable for a wide range of biomedical applications. This review provides a conclusive analysis of the results on using the tunable vaterite metastability in the development of biodegradable drug delivery systems and therapeutic vehicles with a controlled and sustained release of the incorporated cargo. This manuscript highlights the nuances of vaterite recrystallization to non-porous calcite, dissolution at acidic pH, biodegradation at in vivo conditions and control over these processes. This review outlines the main benefits of vaterite instability for the controlled liberation of the encapsulated molecules for the development of biodegradable natural and synthetic polymeric materials for biomedical purposes.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Scientific Medical Center, Saratov State University, 410012 Saratov, Russia
| | | |
Collapse
|
7
|
Lin YH, Singuru MMR, Marpaung DSS, Liao WC, Chuang MC. Ethylene Glycol-Manipulated Syntheses of Calcium Carbonate Particles and DNA Capsules toward Efficient ATP-Responsive Cargo Release. ACS APPLIED BIO MATERIALS 2023; 6:3351-3360. [PMID: 37466412 DOI: 10.1021/acsabm.3c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cargo molecule-encapsulated DNA capsules synthesized with a solid sacrificial template have elicited significant interest in the last decade and have been used for active materials in applications ranging from biosensors to drug delivery. However, the correlation between template properties and the subsequent assembly and triggered release behavior of the resultant carriers remain uninvestigated. In this study, ethylene glycol (EG) was added during the CaCO3 precipitation synthesis to yield particles of various sizes and surface properties, and the adenosine triphosphate (ATP)-responsive release characteristics of the fabricated DNA capsules affected by these particle properties were investigated. The geometry, crystallization, and surface morphology of the CaCO3 particles co-precipitated at various EG concentrations were characterized. We discuss the integrity of cross-linking hybridization, fluorescent molecule internalization, degree of leakage, and release efficiency of the resulting DNA capsules and their relevance brought by particle properties. To achieve efficient encapsulation and cargo release, the surface roughness of the CaCO3 particles was explored and was deemed a key determinant of the compactness of the DNA shell after template removal. This effect was particularly strong in CaCO3 particles in connection with high EG concentrations. The DNA capsules fabricated using 83% EG exhibited low leakage, high loading, and moderate release efficiencies as well as a greater apparent association constant with ATP due to their small particle size and the high-integrity DNA shells.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan
| | | | - David Septian Sumanto Marpaung
- International Ph.D. Program in Biomedical and Materials Science, Tunghai University, Taichung 407224, Taiwan
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan
- International Ph.D. Program in Biomedical and Materials Science, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
8
|
Song J, Vikulina AS, Parakhonskiy BV, Skirtach AG. Hierarchy of hybrid materials. Part-II: The place of organics- on-inorganics in it, their composition and applications. Front Chem 2023; 11:1078840. [PMID: 36762189 PMCID: PMC9905839 DOI: 10.3389/fchem.2023.1078840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Hybrid materials or hybrids incorporating organic and inorganic constituents are emerging as a very potent and promising class of materials due to the diverse but complementary nature of their properties. This complementarity leads to a perfect synergy of properties of the desired materials and products as well as to an extensive range of their application areas. Recently, we have overviewed and classified hybrid materials describing inorganics-in-organics in Part-I (Saveleva, et al., Front. Chem., 2019, 7, 179). Here, we extend that work in Part-II describing organics-on-inorganics, i.e., inorganic materials modified by organic moieties, their structure and functionalities. Inorganic constituents comprise of colloids/nanoparticles and flat surfaces/matrices comprise of metallic (noble metal, metal oxide, metal-organic framework, magnetic nanoparticles, alloy) and non-metallic (minerals, clays, carbons, and ceramics) materials; while organic additives can include molecules (polymers, fluorescence dyes, surfactants), biomolecules (proteins, carbohydtrates, antibodies and nucleic acids) and even higher-level organisms such as cells, bacteria, and microorganisms. Similarly to what was described in Part-I, we look at similar and dissimilar properties of organic-inorganic materials summarizing those bringing complementarity and composition. A broad range of applications of these hybrid materials is also presented whose development is spurred by engaging different scientific research communities.
Collapse
Affiliation(s)
- Junnan Song
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anna S. Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Lian Q, Zheng S, Shi Z, Li K, Chen R, Wang P, Liu H, Chen Y, Zhong Q, Liu Q, Pan X, Gao J, Gao C, Liu W, Wu X, Zhang Y, Zhang Y, Wang J, Cheng H. Using a degradable three-layer sandwich-type coating to prevent titanium implant infection with the combined efficient bactericidal ability and fast immune remodeling property. Acta Biomater 2022; 154:650-666. [PMID: 36306986 DOI: 10.1016/j.actbio.2022.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023]
Abstract
Titanium (Ti) implant-associated infections are a challenge in orthopedic surgery, for which a series of antibacterial coatings have been designed and fabricated to reduce the risk of bacterial contamination. Herein, we created a degradable three-layer sandwich-type coating to achieve long-term antibacterial effects while simultaneously reconstructing the local immune microenvironment. The vancomycin (Van)-loaded vaterite coating constitutes the outer and inner layers, whereas Interleukin-12 (IL-12)-containing liposomes embedded in sodium alginate constitutes the middle layer. Van, released from the vaterite, demonstrated a favorable and rapid bactericidal ability against the representative methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. The released IL-12 exhibited the desired immune reconstitution abilities, actively facilitating defenses against subsequent bacterial invasions. Furthermore, the biocompatibility and cell-binding feature of the multifunctional coating was beneficial for achieving solid interface intergradation. Overall, the benefits of the three-layer sandwich-type coating, including the convenient fabrication process, efficient antimicrobial activity, fast immune remodeling property, fine cell-binding feature, and biodegradability, highlight its promising translational potential in preventing implant infection. STATEMENT OF SIGNIFICANCE: To prevent titanium implant infections, researchers have designed various antibacterial coatings. However, most of these coatings focused only on killing the invading bacteria over a limited postoperative period. However, the local immune microenvironment is compromised during surgery. Local immune deflection impedes the ability of the local immune defenses to clear bacteria and limits immune memory building from active defense against long-term subsequent bacterial invasions. Furthermore, these coatings are usually nondegradable and differ substantially from bone components, thereby impairing the integration of the coating and bone interface and generating concerns about implant stability and bacterial contamination. In this work, we synthesized a degradable coating that provides sustained antibacterial activity, promotes immune reconstitution, and simultaneously achieves solid bone integration.
Collapse
Affiliation(s)
- Qiang Lian
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shaowei Zheng
- Department of Orthopedic, Huizhou First Hospital, Guangdong Medical University, Huizhou 516003, China; Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhe Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kangxian Li
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pinkai Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haibing Liu
- Department of Orthopedic, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang 421001, China
| | - Yuhang Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qi Liu
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Xin Pan
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Gao
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chenghao Gao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 43000, China
| | - Weilu Liu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xuanpin Wu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yayun Zhang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 43000, China
| | - Yang Zhang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Microfluidic Synthesis and Analysis of Bioinspired Structures Based on CaCO 3 for Potential Applications as Drug Delivery Carriers. Pharmaceutics 2022; 14:pharmaceutics14010139. [PMID: 35057035 PMCID: PMC8777975 DOI: 10.3390/pharmaceutics14010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Naturally inspired biomaterials such as calcium carbonate, produced in biological systems under specific conditions, exhibit superior properties that are difficult to reproduce in a laboratory. The emergence of microfluidic technologies provides an effective approach for the synthesis of such materials, which increases the interest of researchers in the creation and investigation of crystallization processes. Besides accurate tuning of the synthesis parameters, microfluidic technologies also enable an analysis of the process in situ with a range of methods. Understanding the mechanisms behind the microfluidic biomineralization processes could open a venue for new strategies in the development of advanced materials. In this review, we summarize recent advances in microfluidic synthesis and analysis of CaCO3-based bioinspired nano- and microparticles as well as core-shell structures on its basis. Particular attention is given to the application of calcium carbonate particles for drug delivery.
Collapse
|
11
|
Chernozem RV, Surmeneva MA, Abalymov AA, Parakhonskiy BV, Rigole P, Coenye T, Surmenev RA, Skirtach AG. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111909. [PMID: 33641905 DOI: 10.1016/j.msec.2021.111909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anatolii A Abalymov
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; Department of Nano- and Biomedical Technologies, Saratov State University, Saratov 410012, Russia
| | | | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Synthesis of Polymer Assembled Mesoporous CaCO3 Nanoparticles for Molecular Targeting and pH-Responsive Controlled Drug Release. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/8749238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CaCO3 nanoparticles are very suitable as intelligent carriers because of their ideal biocompatibility and biodegradability, especially their sensitivity to pH. In this paper, we use mesoporous CaCO3 nanoparticles as intelligent carrier, sodium alginate, and chitosan as alternating assembly materials, folic acid as target molecules, and exploit layer-by-layer assembly technology to achieve sensitive molecular targeting and pH response drug release. Mesoporous CaCO3 hybrid nanoparticles have high drug loading on doxorubicin. The effects of different pH values on drug release in vitro were studied by regulating simulated body fluids with different pH values. The cytotoxicity, targeting effect, and drug release of human cervical cancer cell line (HeLa) were studied by cell vitality and imaging experiments. All the evidence suggests that the smart mesoporous CaCO3 nanoparticles may be a potential clinical application platform for cancer therapy.
Collapse
|
13
|
Guan Y, Wang X, Cao W, Zhou G. Controlled Synthesis and Microstructure of Metastable Flower-Like Vaterite. MATERIALS 2018; 11:ma11112300. [PMID: 30453491 PMCID: PMC6266751 DOI: 10.3390/ma11112300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 11/16/2022]
Abstract
Developing a simple morphology-controlled synthesis of metastable vaterite is a goal in the field of materials research. In this paper, we successfully synthesized flower-like dendritic vaterite crystals using a microwave method with 2-naphthaleneacetic acid (2-NAA) and ethylene glycol (EG) as the regulating additives. The results show that the morphology of vaterite could be regulated by inducing a monolayer or multilayer flower-like structure with the appropriate choice of regulators. Interestingly, the microstructure analysis showed that such flower-like vaterite dendrites host two different kinds of crystal cells. The negative carbonate 2-NAA effectively neutralized the charge of the vaterite (001) plane, resulting in the crystalline growth along the direction parallel to it and inducing a flower-like morphology. This experiment reveals an alternative approach to controlling hierarchical structures during the synthesis of similar classes of minerals.
Collapse
Affiliation(s)
- Yebin Guan
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China.
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xiaohong Wang
- Anhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China.
| | - Weicheng Cao
- Center for Chemistry of Novel & High-Performance Materials, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Gentao Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
14
|
Wang A, Yang Y, Zhang X, Liu X, Cui W, Li J. Gelatin-Assisted Synthesis of Vaterite Nanoparticles with Higher Surface Area and Porosity as Anticancer Drug Containers In Vitro. Chempluschem 2015; 81:194-201. [DOI: 10.1002/cplu.201500515] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Anhe Wang
- National Center for Nanoscience and Technology; Zhong Guan Cun; Bei Yi Tiao 11 Beijing 100190 P. R. China
| | - Yang Yang
- National Center for Nanoscience and Technology; Zhong Guan Cun; Bei Yi Tiao 11 Beijing 100190 P. R. China
| | - Xiaoming Zhang
- National Center for Nanoscience and Technology; Zhong Guan Cun; Bei Yi Tiao 11 Beijing 100190 P. R. China
| | - Xingcen Liu
- Key Lab of Colloid, Interface, and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Zhong Guan Cun; Bei Yi Jie 2 Beijing 100190 P. R. China
| | - Wei Cui
- Key Lab of Colloid, Interface, and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Zhong Guan Cun; Bei Yi Jie 2 Beijing 100190 P. R. China
| | - Junbai Li
- Key Lab of Colloid, Interface, and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; Zhong Guan Cun; Bei Yi Jie 2 Beijing 100190 P. R. China
| |
Collapse
|
15
|
Parakhonskiy BV, Yashchenok AM, Donatan S, Volodkin DV, Tessarolo F, Antolini R, Möhwald H, Skirtach AG. Macromolecule loading into spherical, elliptical, star-like and cubic calcium carbonate carriers. Chemphyschem 2014; 15:2817-22. [PMID: 25044943 DOI: 10.1002/cphc.201402136] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/08/2014] [Indexed: 11/11/2022]
Abstract
We fabricated calcium carbonate particles with spherical, elliptical, star-like and cubical morphologies by varying relative salt concentrations and adding ethylene glycol as a solvent to slow down the rate of particle formation. The loading capacity of particles of different isotropic (spherical and cubical) and anisotropic (elliptical and star-like) geometries is investigated, and the surface area of such carriers is analysed. Potential applications of such drug delivery carriers are highlighted.
Collapse
Affiliation(s)
- Bogdan V Parakhonskiy
- BIOtech research center, Department of Physics, University of Trento via delle Regole 101, 38123 Mattarello (Italy), Fax: (+39) 0461 283659; Shubnikov Institute of Crystallography Russian Academy of Science, Leninskii prospekt 59, Moscow 119333 (Russia).
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kurapati R, Raichur AM. Composite cyclodextrin–calcium carbonate porous microparticles and modified multilayer capsules: novel carriers for encapsulation of hydrophobic drugs. J Mater Chem B 2013; 1:3175-3184. [DOI: 10.1039/c3tb20192a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Kang XJ, Dai YL, Ma PA, Yang DM, Li CX, Hou ZY, Cheng ZY, Lin J. Poly(acrylic acid)-modified Fe3O4 microspheres for magnetic-targeted and pH-triggered anticancer drug delivery. Chemistry 2012; 18:15676-82. [PMID: 23080514 DOI: 10.1002/chem.201202433] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Indexed: 12/13/2022]
Abstract
Monodisperse poly(acrylic acid)-modified Fe(3)O(4) (PAA@Fe(3)O(4)) hybrid microspheres with dual responses (magnetic field and pH) were successfully fabricated. The PAA polymer was encapsulated into the inner cavity of Fe(3)O(4) hollow spheres by a vacuum-casting route and photo-initiated polymerization. TEM images show that the samples consist of monodisperse porous spheres with a diameter around 200 nm. The Fe(3)O(4) spheres, after modification with the PAA polymer, still possess enough space to hold guest molecules. We selected doxorubicin (DOX) as a model drug to investigate the drug loading and release behavior of as-prepared composites. The release of DOX molecules was strongly dependent on the pH value due to the unique property of PAA. The HeLa cell-uptake process of DOX-loaded PAA@Fe(3)O(4) was observed by confocal laser scanning microscopy (CLSM). After being incubated with HeLa cells under magnet magnetically guided conditions, the cytotoxtic effects of DOX-loaded PAA@Fe(3)O(4) increased. These results indicate that pH-responsive magnetic PAA@Fe(3)O(4) spheres have the potential to be used as anticancer drug carriers.
Collapse
Affiliation(s)
- Xiao-Jiao Kang
- State Key Laboratory of Rare Earth Resource, Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Science, PR China
| | | | | | | | | | | | | | | |
Collapse
|