1
|
Zupanc A, Install J, Weckman T, Melander MM, Heikkilä MJ, Kemell M, Honkala K, Repo T. Sequential Selective Dissolution of Coinage Metals in Recyclable Ionic Media. Angew Chem Int Ed Engl 2024; 63:e202407147. [PMID: 38742485 DOI: 10.1002/anie.202407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Coinage metals Cu, Ag, and Au are essential for modern electronics and their recycling from waste materials is becoming increasingly important to guarantee the security of their supply. Designing new sustainable and selective procedures that would substitute currently used processes is crucial. Here, we describe an unprecedented approach for the sequential dissolution of single metals from Cu, Ag, and Au mixtures using biomass-derived ionic solvents and green oxidants. First, Cu can be selectively dissolved in the presence of Ag and Au with a choline chloride/urea/H2O2 mixture, followed by the dissolution of Ag in lactic acid/H2O2. Finally, the metallic Au, which is not soluble in either solution above, is dissolved in choline chloride/urea/Oxone. Subsequently, the metals were simply and quantitatively recovered from dissolutions, and the solvents were recycled and reused. The applicability of the developed approach was demonstrated by recovering metals from electronic waste substrates such as printed circuit boards, gold fingers, and solar panels. The dissolution reactions and selectivity were explored with different analytical techniques and DFT calculations. We anticipate our approach will pave a new way for the contemporary and sustainable recycling of multi-metal waste substrates.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Joseph Install
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Timo Weckman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Mikko J Heikkilä
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Timo Repo
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| |
Collapse
|
2
|
Zupanc A, Install J, Jereb M, Repo T. Sustainable and Selective Modern Methods of Noble Metal Recycling. Angew Chem Int Ed Engl 2023; 62:e202214453. [PMID: 36409274 PMCID: PMC10107291 DOI: 10.1002/anie.202214453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Noble metals exhibit broad arrange of applications in industry and several aspects of human life which are becoming more and more prevalent in modern times. Due to their limited sources and constantly and consistently expanding demand, recycling of secondary and waste materials must accompany the traditional mineral extractions. This Minireview covers the most recent solvometallurgical developments in regeneration of Pd, Pt, Rh, Ru, Ir, Os, Ag and Au with emphasis on sustainability and selectivity. Processing-by selective oxidative dissolution, reductive precipitation, solvent extraction, co-precipitation, membrane transfer and trapping to solid media-of eligible multi-metal substrates for recycling from waste printed circuit boards to end-of-life automotive catalysts are discussed. Outlook for possible future direction for noble metal recycling is proposed with emphasis on sustainable approaches.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Joseph Install
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| | - Marjan Jereb
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| |
Collapse
|
3
|
Sedki M, Zhao G, Ma S, Jassby D, Mulchandani A. Linker-Free Magnetite-Decorated Gold Nanoparticles (Fe 3O 4-Au): Synthesis, Characterization, and Application for Electrochemical Detection of Arsenic (III). SENSORS (BASEL, SWITZERLAND) 2021; 21:883. [PMID: 33525604 PMCID: PMC7866134 DOI: 10.3390/s21030883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/17/2023]
Abstract
Linker-free magnetite nanoparticles (Fe3O4NPs)-decorated gold nanoparticles (AuNPs) were grown using a new protocol that can be used as a new platform for synthesis of other intact metal-metal oxide nanocomposites without the need for linkers. This minimizes the distance between the metal and metal oxide nanoparticles and ensures the optimum combined effects between the two material interfaces. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirmed the successful synthesis of the Fe3O4-Au nanocomposite, without any change in the magnetite phase. Characterization, using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy, revealed the composite to consist of AuNPs of 70 ± 10 nm diameter decorated with tiny 10 ± 3 nm diameter Fe3O4NPs in Au:Fe mass ratio of 5:1. The prepared Fe3O4-Au nanocomposite was embedded in ionic liquid (IL) and applied for the modification of glassy carbon electrode (GCE) for the electrochemical detection of As(III) in water. By combining the excellent catalytic properties of the AuNPs with the high adsorption capacity of the tiny Fe3O4NPs towards As(III), as well as the good conductivity of IL, the Fe3O4-Au-IL nanocomposite showed excellent performance in the square wave anodic stripping voltammetry detection of As(III). Under the optimized conditions, a linear range of 1 to 100 μg/L was achieved with a detection limit of 0.22 μg/L (S/N = 3), and no interference from 100-fold higher concentrations of a wide variety of cations and anions found in water. A very low residual standard deviation of 1.16% confirmed the high precision/reproducibility of As(III) analysis and the reliability of the Fe3O4-Au-IL sensing interface. Finally, this proposed sensing interface was successfully applied to analyzing synthetic river and wastewater samples with a 95-101% recovery, demonstrating excellent accuracy, even in complex synthetic river and wastewater samples containing high concentrations of humic acid without any sample pretreatments.
Collapse
Affiliation(s)
- Mohammed Sedki
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA;
| | - Guo Zhao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA;
| | - Shengcun Ma
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA; (S.M.); (D.J.)
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA; (S.M.); (D.J.)
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA;
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, USA
| |
Collapse
|
4
|
Balva M, Legeai S, Leclerc N, Billy E, Meux E. Environmentally Friendly Recycling of Fuel-Cell Membrane Electrode Assemblies by Using Ionic Liquids. CHEMSUSCHEM 2017; 10:2922-2935. [PMID: 28520196 DOI: 10.1002/cssc.201700456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Indexed: 06/07/2023]
Abstract
The platinum nanoparticles used as the catalyst in proton exchange membrane fuel cells (PEMFCs) represent approximately 46 % of the total price of the cells for a large-scale production, and this is one of the barriers to their commercialization. Therefore, the recycling of the platinum catalyst could be the best alternative to limit the production costs of PEMFCs. The usual recovery routes for spent catalysts containing platinum are pyro-hydrometallurgical processes in which a calcination step is followed by aqua regia treatment, and these processes generate fumes and NOx emissions, respectively. The electrochemical recovery route proposed here is more environmentally friendly, performed under "soft" temperature conditions, and does not result in any gas emissions. It consists of the coupling of the electrochemical leaching of platinum in chloride-based ionic liquids (ILs), followed by its electrodeposition. The leaching of platinum was studied in pure ILs and in ionic-liquid melts at different temperatures and with different chloride contents. Through the modulation of the composition of the ionic-liquid melts, it is possible to leach and electrodeposit the platinum from fuel-cell electrodes in a single-cell process under an inert or ambient atmosphere.
Collapse
Affiliation(s)
- Maxime Balva
- Institut Jean Lamour, Chimie et Electrochimie des Matériaux, UMR CNRS 7198, Université de Lorraine, Metz, France
- CEA Tech Lorraine, Metz, France
| | - Sophie Legeai
- Institut Jean Lamour, Chimie et Electrochimie des Matériaux, UMR CNRS 7198, Université de Lorraine, Metz, France
| | - Nathalie Leclerc
- Institut Jean Lamour, Chimie et Electrochimie des Matériaux, UMR CNRS 7198, Université de Lorraine, Metz, France
| | - Emmanuel Billy
- CEA French Atomic and Alternative Energies Commission, LITEN, Grenoble, France
| | - Eric Meux
- Institut Jean Lamour, Chimie et Electrochimie des Matériaux, UMR CNRS 7198, Université de Lorraine, Metz, France
| |
Collapse
|
5
|
Affiliation(s)
- Maxim V Fedorov
- Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde , John Anderson Bldg, 107 Rottenrow, Glasgow, G4 0NG United Kingdom
| | | |
Collapse
|