1
|
Shi Q, Wen H, Xu Y, Zhao X, Zhang J, Li Y, Meng Q, Yu F, Xiao J, Li X. Virtual screening-based discovery of AI-2 quorum sensing inhibitors that interact with an allosteric hydrophobic site of LsrK and their functional evaluation. Front Chem 2023; 11:1185224. [PMID: 37292175 PMCID: PMC10244669 DOI: 10.3389/fchem.2023.1185224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction: Quorum sensing (QS) is a bacterial intracellular and intercellular communication system that regulates virulence factor production, biofilm formation, and antibiotic sensitivity. Quorum-sensing inhibitors (QSIs) are a novel class of antibiotics that can effectively combat antibiotic resistance. Autoinducer-2 (AI-2) is a universal signaling molecule that mediates inter- and intraspecies QS systems among different bacteria. Furthermore, LsrK plays an important role in regulating the activity and stability of the intracellular AI-2 signaling pathway. Thus, LsrK is considered an important target for the development of QSIs. Methods: We designed a workflow integrating molecular dynamic (MD) simulations, virtual screening, LsrK inhibition assays, cell-based AI-2-mediated QS interference assays, and surface plasmon resonance (SPR)-based protein affinity assays to screen for potential LsrK kinase inhibitors. Results: MD simulation results of the LsrK/ATP complex revealed hydrogen bonds and salt bridge formation among four key residues, namely, Lys 431, Tyr 341, Arg 319, and Arg 322, which are critical for the binding of ATP to LsrK. Furthermore, MD simulation results indicated that the ATP-binding site has an allosteric pocket that can become larger and be occupied by small molecule compounds. Based on these MD simulation results, a constraint of forming at least one hydrogen bond with Arg 319, Arg 322, Lys 431, or Tyr 341 residues was introduced when performing virtual screening using Glide's virtual screening workflow (VSW). In the meantime, compounds with hydrophobic group likely to interact with the allosteric hydrophobic pocket are preferred when performing visual inspection. Seventy-four compounds were selected for the wet laboratory assays based on virtual screening and the absorption, distribution, metabolism, and excretion (ADME) properties of these compounds. LsrK inhibition assays revealed 12 compounds inhibiting LsrK by more than 60% at a 200 μM concentration; four of these (Y205-6768, D135-0149, 3284-1358, and N025-0038) had IC50 values below 50 μM and were confirmed as ATP-competitive inhibitors. Six of these 12 LsrK inhibitors exhibited high AI-2 QS inhibition, of which, Y205-6768 had the highest activity with IC50 = 11.28 ± 0.70 μM. The SPR assay verified that compounds Y205-6768 and N025-0038 specifically bound to LsrK. MD simulation analysis of the docking complexes of the four active compounds with LsrK further confirmed the importance of forming hydrogen bonds and salt bridges with key basic amino acid residues including Lys 431, Tyr 341, Arg 319, and Arg 322 and filling the allosteric hydrophobic pocket next to the purine-binding site of LsrK. Discussion: Our study clarified for the first time that there is an allosteric site near the ATP-binding site of Lsrk and that it enriches the structure-activity relationship information of Lsrk inhibitors. The four identified compounds showed novel structures, low molecular weights, high activities, and novel LsrK binding modes, rendering them suitable for further optimization for effective AI-2 QSIs. Our work provides a valuable reference for the discovery of QSIs that do not inhibit bacterial growth, thereby avoiding the emergence of drug resistance.
Collapse
Affiliation(s)
- Qianqian Shi
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Huiqi Wen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yijie Xu
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Zhang
- Qionglai Medical Center Hospital, Chengdu, China
| | - Ye Li
- The No 968 Hospital of PLA, Jinzhou, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fang Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junhai Xiao
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xingzhou Li
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
2
|
Garg N, Conway LP, Ballet C, Correia MSP, Olsson FKS, Vujasinovic M, Löhr J, Globisch D. Chemoselective Probe Containing a Unique Bioorthogonal Cleavage Site for Investigation of Gut Microbiota Metabolism. Angew Chem Int Ed Engl 2018; 57:13805-13809. [PMID: 30168889 DOI: 10.1002/anie.201804828] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Neeraj Garg
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Louis P. Conway
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Caroline Ballet
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Mario S. P. Correia
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Frida K. S. Olsson
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Miroslav Vujasinovic
- Department of Clinical ScienceIntervention and Technology (CLINTEC) and Department for Digestive DiseasesKarolinska Institute and Karolinska University Hospital Stockholm Sweden
| | - J.‐Matthias Löhr
- Department of Clinical ScienceIntervention and Technology (CLINTEC) and Department for Digestive DiseasesKarolinska Institute and Karolinska University Hospital Stockholm Sweden
| | - Daniel Globisch
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| |
Collapse
|
3
|
Garg N, Conway LP, Ballet C, Correia MSP, Olsson FKS, Vujasinovic M, Löhr J, Globisch D. Chemoselective Probe Containing a Unique Bioorthogonal Cleavage Site for Investigation of Gut Microbiota Metabolism. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Neeraj Garg
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Louis P. Conway
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Caroline Ballet
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Mario S. P. Correia
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Frida K. S. Olsson
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| | - Miroslav Vujasinovic
- Department of Clinical ScienceIntervention and Technology (CLINTEC) and Department for Digestive DiseasesKarolinska Institute and Karolinska University Hospital Stockholm Sweden
| | - J.‐Matthias Löhr
- Department of Clinical ScienceIntervention and Technology (CLINTEC) and Department for Digestive DiseasesKarolinska Institute and Karolinska University Hospital Stockholm Sweden
| | - Daniel Globisch
- Department of Medicinal ChemistryScience for Life LaboratoryUppsala University Box 574 75123 Uppsala Sweden
| |
Collapse
|
4
|
Tsuchikama K, Gooyit M, Harris TL, Zhu J, Globisch D, Kaufmann GF, Janda KD. Glycation Reactivity of a Quorum-Sensing Signaling Molecule. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kyoji Tsuchikama
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Major Gooyit
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Tyler L. Harris
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Jie Zhu
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Daniel Globisch
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Gunnar F. Kaufmann
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Kim D. Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry; Immunology and Microbial Science; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
- Worm Institute of Research & Medicine; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
5
|
Tsuchikama K, Gooyit M, Harris TL, Zhu J, Globisch D, Kaufmann GF, Janda KD. Glycation Reactivity of a Quorum-Sensing Signaling Molecule. Angew Chem Int Ed Engl 2016; 55:4002-6. [PMID: 26890076 DOI: 10.1002/anie.201511911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 01/23/2023]
Abstract
Reported herein is that (4S)-4,5-dihydroxy-2,3-pentanedione (DPD) can undergo a previously undocumented non-enzymatic glycation reaction. Incubation of DPD with viral DNA or the antibiotic gramicidin S resulted in significant biochemical alterations. A protein-labeling method was consequently developed that facilitated the identification of unrecognized glycation targets of DPD in a prokaryotic system. These results open new avenues toward tracking and understanding the fate and function of the elusive quorum-sensing signaling molecule.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Major Gooyit
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Tyler L Harris
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jie Zhu
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Daniel Globisch
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Gunnar F Kaufmann
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kim D Janda
- The Skaggs Institute for Chemical Biology and Departments of Chemistry, Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA. .,Worm Institute of Research & Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
6
|
Worthington RJ, Melander C. Deconvoluting interspecies bacterial communication. Angew Chem Int Ed Engl 2012; 51:6314-5. [PMID: 22644666 DOI: 10.1002/anie.201202440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Indexed: 11/06/2022]
Abstract
The universal bacterial signal molecule autoinducer-2 (AI-2) is derived from 4,5-dihydroxy-2,3-pentanedione (DPD). DPD exists in a complex equilibrium between multiple forms, and NMR spectroscopy has now been used to establish that the extent of the structural diversity displayed by DPD over a broad pH range is even greater than previously posited.
Collapse
|