1
|
Matuszewska O, Battisti T, Ferreira RR, Biot N, Demitri N, Mézière C, Allain M, Sallé M, Mañas-Valero S, Coronado E, Fresta E, Costa RD, Bonifazi D. Tweaking the Optoelectronic Properties of S-Doped Polycyclic Aromatic Hydrocarbons by Chemical Oxidation. Chemistry 2023; 29:e202203115. [PMID: 36333273 DOI: 10.1002/chem.202203115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Peri-thiaxanthenothiaxanthene, an S-doped analog of peri-xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S-atoms. Chemical oxidation of peri-thiaxanthenothiaxanthene with H2 O2 led to the relevant sulfoxide and sulfone congeners, whereas electrooxidation gave access to sulfonium-type derivatives forming crystalline mixed valence (MV) complexes. These complexes depicted peculiar molecular and solid-state arrangements with face-to-face π-π stacking organization. Photophysical studies showed a widening of the optical bandgap upon progressive oxidation of the S-atoms, with the bis-sulfone derivative displaying the largest value (E00 =2.99 eV). While peri-thiaxanthenothiaxanthene showed reversible oxidation properties, the sulfoxide and sulfone derivatives mainly showed reductive events, corroborating their n-type properties. Electric measurements of single crystals of the MV complexes exhibited a semiconducting behavior with a remarkably high conductivity at room temperature (10-1 -10-2 S cm-1 and 10-2 -10-3 S cm-1 for the O and S derivatives, respectively), one of the highest reported so far. Finally, the electroluminescence properties of the complexes were tested in light-emitting electrochemical cells (LECs), obtaining the first S-doped mid-emitting PAH-based LECs.
Collapse
Affiliation(s)
- Oliwia Matuszewska
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Tommaso Battisti
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Ruben R Ferreira
- Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Nicolas Biot
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Cécile Mézière
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Magali Allain
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Marc Sallé
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Elisa Fresta
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Guo J, Li Z, Tian X, Zhang T, Wang Y, Dou C. Diradical B/N-Doped Polycyclic Hydrocarbons. Angew Chem Int Ed Engl 2023; 62:e202217470. [PMID: 36599802 DOI: 10.1002/anie.202217470] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Heterocyclic diradicaloids with atom-precise control over open-shell nature are promising materials for organic electronics and spintronics. Herein, we disclose quinoidal π-extension of a B/N-heterocycle for generating B/N-type organic diradicaloids. Two quinoidal π-extended B/N-doped polycyclic hydrocarbons that feature fusion of the B/N-heterocycle motif with the antiaromatic s-indacene or dicyclopenta[b,g]naphthalene core were synthesized. This quinoidal π-extension and B/N-heterocycle leads to their open-shell electronic nature, which stands in contrast to the multiple-resonance effect of conventional B/N-type emitters. These B/N-type diradicaloids have modulated (anti)aromaticity and enhanced diradical characters comparing with the all-carbon analogues, as well as intriguing properties, such as magnetic activities, narrow energy gaps and highly red-shifted absorptions. This study thus opens the new space for both of B/N-doped polycyclic π-systems and heterocyclic diradicaloids.
Collapse
Affiliation(s)
- Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zeyi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Ruhl J, Oberhof N, Dreuw A, Wegner HA. Diazadiboraacenes: Synthesis, Spectroscopy and Computations. Angew Chem Int Ed Engl 2023; 62:e202300785. [PMID: 36779363 DOI: 10.1002/anie.202300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/14/2023]
Abstract
The incorporation of heteroatoms into hydrocarbon compounds greatly expands the chemical space of molecular materials. In this context, B-N doping takes a center stage due to its isosterism with a C=C-bond. Herein, we present a new and modular synthetic concept to access novel diazadiborabenzo[b]triphenylenes 7 a-h using the B-N doped biradical 16 as intermediate. Characterization of the photophysical properties revealed the emission spectra of the diazadibora benzo[b]triphenylenes 7 a-h can conveniently be tuned by small changes of the substitution on the boron-atom. All of the diazadibora compounds show a short life-time phosphorescence. Additionally, we were able to rationalize the excited-state relaxation of the diazadiboraacene 7 a via intersystem crossing by quantum chemical calculations. The new synthetic strategy provides an elegant route to various novel B-N doped acenes with great potential for applications in molecular materials.
Collapse
Affiliation(s)
- Julia Ruhl
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| | - Nils Oberhof
- Interdisciplinary Center for Scientic Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientic Computing, Heidelberg University, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany.,Center for Materials Research (LaMa), Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| |
Collapse
|
4
|
Kashida J, Shoji Y, Taka H, Fukushima T. Synthesis and Properties of B 4 N 4 -Heteropentalenes Fused with Polycyclic Hydrocarbons. Chemistry 2023; 29:e202203561. [PMID: 36734177 DOI: 10.1002/chem.202203561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Hybrid molecules of π-conjugated carbon rings and BN-heterocyclic rings (h-CBNs) fused with each other have been a rare class of compounds due to the limited availability of their synthetic methods. Here we report the synthesis of new h-CBNs featuring a B4 N4 -heteropentalene core and polycyclic aromatic hydrocarbon wings. Using 1,2-azaborinine derivatives as a building block, we developed a rational synthetic protocol that allows the formation of a B4 N4 ring in a stepwise manner, resulting in the fully fused ABA-type triblock molecules. Thus, three derivatives of 1 bearing naphthalene (1Naph ), anthracene (1Anth ), or phenanthrene (1Phen ) wings fused with the B4 N4 core were synthesized and characterized. Among them, 1Phen , which displays the highest triplet-state energy, was found to serve a host material for phosphorescent OLED devices, for which a maximum external quantum efficiency of 13.7 % was recorded. These findings may promote the synthesis of various types of h-CBNs aiming at new properties arising from the synergy of two different π-electronic systems.
Collapse
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hideo Taka
- Konica Minolta Ishikawa-cho, Hachioji, Tokyo, 192-8505, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
5
|
Zhang XL, Gu J, Cui WH, Ye Z, Yi W, Zhang Q, He Y. Stepwise Asymmetric Allylic Substitution-Isomerization Enabled Mimetic Synthesis of Axially Chiral B,N-Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202210456. [PMID: 36281992 DOI: 10.1002/anie.202210456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/07/2022]
Abstract
Axially chiral molecules bearing multiple stereogenic axes are of great importance in the field of organic chemistry. However, the efficient construction of atropisomers featuring two different types of stereogenic axes has rarely been explored. Herein, we report the novel atroposelective synthesis of configurationally stable axially chiral B,N-heterocycles. By using stepwise asymmetric allylic substitution-isomerization (AASI) strategy, diaxially chiral B,N-heterocycles bearing B-C and C-N axes that are related to the moieties of axially chiral enamines and arylborons were also obtained. In this case, all four stereoisomers of diaxially chiral B,N-heterocycles were stereodivergently afforded in high enantioselectivities. Density functional theory (DFT) studies demonstrated that the NH⋅⋅⋅π interactions played a unique role in the promotion of stereospecific isomerization, thereby leading to the highly efficient central-to-axial chirality transfer.
Collapse
Affiliation(s)
- Xiu-Lian Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wen-Hao Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
6
|
Bachmann J, Helbig A, Crumbach M, Krummenacher I, Braunschweig H, Helten H. Fusion of Aza- and Oxadiborepins with Furans in a Reversible Ring-Opening Process Furnishes Versatile Building Blocks for Extended π-Conjugated Materials. Chemistry 2022; 28:e202202455. [PMID: 35943830 PMCID: PMC9825880 DOI: 10.1002/chem.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/11/2023]
Abstract
A modular synthesis of both difurooxa- and difuroazadiborepins from a common precursor is demonstrated. Starting from 2,2'-bifuran, after protection of the positions 5 and 5' with bulky silyl groups, formation of the novel polycycles proceeds through opening of the furan rings to a dialkyne and subsequent re-cyclization in the borylation step. The resulting bifuran-fused diborepins show pronounced stability, highly planar tricyclic structures, and intense blue light emission. Deprotection and transformation into dibrominated building blocks that can be incorporated into π-extended materials can be performed in one step. Detailed DFT calculations provide information about the aromaticity of the constituent rings of this polycycle.
Collapse
Affiliation(s)
- Jonas Bachmann
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Merian Crumbach
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry andInstitute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
7
|
Meng G, Dai H, Huang T, Wei J, Zhou J, Li X, Wang X, Hong X, Yin C, Zeng X, Zhang Y, Yang D, Ma D, Li G, Zhang D, Duan L. Amine‐Directed Formation of B−N Bonds for BN‐Fused Polycyclic Aromatic Multiple Resonance Emitters with Narrowband Emission. Angew Chem Int Ed Engl 2022; 61:e202207293. [DOI: 10.1002/anie.202207293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianping Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiao Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xiangchen Hong
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Chen Yin
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
8
|
Shao X, Liu M, Liu J, Wang L. A Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angew Chem Int Ed Engl 2022; 61:e202205893. [DOI: 10.1002/anie.202205893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Xingxin Shao
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Mengyu Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
9
|
Koner A, Morgenstern B, Andrada DM. Metathesis Reactions of a NHC-Stabilized Phosphaborene. Angew Chem Int Ed Engl 2022; 61:e202203345. [PMID: 35583052 PMCID: PMC9401048 DOI: 10.1002/anie.202203345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/25/2022]
Abstract
The BP unsaturated unit is a very attractive functional group as it provides novel reactivity and unique physical properties. Nonetheless, applications remain limited so far due to the bulky nature of B/P-protecting groups, required to prevent oligomerization. Herein, we report the synthesis and isolation of a N-heterocyclic carbene (NHC)-stabilized phosphaborene, bearing a trimethylsilyl (TMS) functionality at the P-terminal, as a room-temperature-stable crystalline solid accessible via facile NHC-induced trimethylsilyl chloride (TMSCl) elimination from its phosphinoborane precursor. This phosphaborene compound, bearing a genuine B=P bond, exhibits a remarkable ability for undergoing P-centre metathesis reactions, which allows the isolation of a series of unprecedented phosphaborenes. X-ray crystallographic analysis, UV/Vis spectroscopy, and DFT calculations provide insights into the B=P bonding situation.
Collapse
Affiliation(s)
- Abhishek Koner
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Bernd Morgenstern
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Diego M. Andrada
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus C4.166123SaarbrückenGermany
| |
Collapse
|
10
|
Meng G, Dai H, Huang T, Wei J, Zhou J, Li X, Wang X, Hong X, Yin C, Zeng X, Zhang Y, Yang D, Ma D, Li G, Zhang D, Duan L. Amine‐directed Formation of B–N Bonds for BN‐fused Polycyclic Aromatic Multiple Resonance Emitters with Narrowband Emission. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guoyun Meng
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Hengyi Dai
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Tianyu Huang
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Jinbei Wei
- Chinese Academy of Sciences Institute of Chemistry 2 North First Street, Zhongguancun CHINA
| | - Jianping Zhou
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Xiao Li
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Xiang Wang
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Xiangchen Hong
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Chen Yin
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Xuan Zeng
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Yuewei Zhang
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Dezhi Yang
- South China University of Technology Institute of Polymer Optoelectronic Materials and Devices CHINA
| | - Dongge Ma
- South China University of Technology Institute of Polymer Optoelectronic Materials and Devices CHINA
| | - Guomeng Li
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Dongdong Zhang
- Tsinghua University Department of Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China CHINA
| | - Lian Duan
- Tsinghua University Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China 100084 Beijing CHINA
| |
Collapse
|
11
|
Koner A, Morgenstern B, Andrada DM. Metathese Reaktionen eines NHC‐stabilisierten Phosphaborens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhishek Koner
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| | - Bernd Morgenstern
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| | - Diego M. Andrada
- Faculty of Natural Sciences and Technology Department of Chemistry Saarland University Campus C4.1 66123 Saarbrücken Deutschland
| |
Collapse
|
12
|
Zeng D, Zhang L, Wang W, Li G, Zhao XJ, He Y. Electrochemical Synthesis of Azaborininones under Metal‐Catalyst‐Free Mild Conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongwen Zeng
- Yunnan Minzu University School of Ethnic Medicine CHINA
| | - Lizhu Zhang
- Yunnan Minzu University School of Ethnic Medicine CHINA
| | - Wei Wang
- Yunnan Minzu University School of Ethnic Medicine CHINA
| | - Ganpeng Li
- Yunnan Minzu University School of Ethnic Medicine CHINA
| | | | - Yonghui He
- Yunnan Minzu University School of Ethnic Medicine 2929 Yuehua Street 650500 Kunming CHINA
| |
Collapse
|
13
|
Shao X, Liu M, Liu J, Wang L. Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xingxin Shao
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Mengyu Liu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| | - Jun Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences State Key Labortory of Polymer Physics and Chemistry 5625 Renmin Street 130022 Changchun CHINA
| | - Lixiang Wang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry CHINA
| |
Collapse
|
14
|
Li W, Du C, Chen X, Fu L, Gao R, Yao Z, Wang J, Hu W, Pei J, Wang X. BN‐Anthracene for High‐Mobility Organic Optoelectronic Materials through Periphery Engineering. Angew Chem Int Ed Engl 2022; 61:e202201464. [DOI: 10.1002/anie.202201464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Wanhui Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Cheng‐Zhuo Du
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Xing‐Yu Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Lin Fu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Rong‐Rong Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Ze‐Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
15
|
Li W, Du CZ, Chen XY, Fu L, Gao RR, Yao ZF, Wang JY, Hu W, Pei J, Wang XY. BN‐Anthracene for High‐Mobility Organic Optoelectronic Materials through Periphery Engineering. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wanhui Li
- Nankai University College of Chemistry Weijin Road 94 300071 Tianjin CHINA
| | - Cheng-Zhuo Du
- Nankai University College of Chemistry Weijin Road 94 300071 Tianjin CHINA
| | - Xing-Yu Chen
- Nankai University College of Chemistry Weijin Road 94 300071 Tianjin CHINA
| | - Lin Fu
- Nankai University College of Chemistry Weijin Road 94 300071 Tianjin CHINA
| | - Rong-Rong Gao
- Nankai University College of Chemistry Weijin Road 94 300071 Tianjin CHINA
| | - Ze-Fan Yao
- Peking University College of Chemistry and Molecular Engineering 100871 Beijing CHINA
| | - Jie-Yu Wang
- Peking University College of Chemistry and Molecular Engineering 100871 Beijing CHINA
| | - Wenping Hu
- Tianjin University Department of Chemistry 300071 Tianjin CHINA
| | - Jian Pei
- Peking University College of Chemistry and Molecular Engineering 100871 Beijing CHINA
| | - Xiao-Ye Wang
- Nankai University College of Chemistry Weijin Road 94 300071 Tianjin CHINA
| |
Collapse
|
16
|
Rapp MR, Leis W, Zinna F, Di Bari L, Arnold T, Speiser B, Seitz M, Bettinger HF. Bright Luminescence by Combining Chiral [2.2]Paracyclophane with a Boron-Nitrogen-Doped Polyaromatic Hydrocarbon Building Block. Chemistry 2022; 28:e202104161. [PMID: 34918840 PMCID: PMC9306876 DOI: 10.1002/chem.202104161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/11/2022]
Abstract
Novel BN-doped compounds based on chiral, tetrasubstituted [2.2]paracyclophane and NBN-benzo[f,g]tetracene were synthesized by Sonogashira-Hagihara coupling. Conjugated ethynyl linkers allow electronic communication between the π-electron systems through-bond, whereas through-space interactions are provided by strong π-π overlap between the pairs of NBN-building blocks. Excellent optical and chiroptical properties in racemic and enantiopure conditions were measured, with molar absorption coefficients up to ϵ=2.04×105 M-1 cm-1 , fluorescence quantum yields up to ΦPL =0.70, and intense, mirror-image electronic circular dichroism and circularly polarized luminescence signals of the magnitude of 10-3 for the absorption and luminescence dissymmetry factors. Computed glum,calcd. values match the experimental ones. Electroanalytical data show both oxidation and reduction of the ethynyl-linked tetra-NBN-substituted paracyclophane, with an overlap of two redox processes for oxidation leading to a diradical dication.
Collapse
Affiliation(s)
- Mario R. Rapp
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Wolfgang Leis
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Francesco Zinna
- Department of Chemistry and Industrial ChemistryUniversità di Pisa56124PisaItaly
| | - Lorenzo Di Bari
- Department of Chemistry and Industrial ChemistryUniversità di Pisa56124PisaItaly
| | - Tamara Arnold
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Bernd Speiser
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Michael Seitz
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Holger F. Bettinger
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
17
|
Hackney HE, Hall DG. Recent Advances in the Luminescence of Arylboronic Acids and their Heteroatom Condensates. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hannah E. Hackney
- Department of Chemistry University of Alberta Centennial Centre for Interdisciplinary Science Edmonton Alberta Canada
- Current address Department of Chemistry McGill University Montreal Quebec Canada
| | - Dennis G. Hall
- Department of Chemistry University of Alberta Centennial Centre for Interdisciplinary Science Edmonton Alberta Canada
| |
Collapse
|
18
|
Keck C, Hahn J, Gupta D, Bettinger HF. Solution Phase Reactivity of Dibenzo[c,e][1,2]azaborinine: Activation and Insertion into Si-E Single Bonds (E=H, OSi(CH 3 ) 3 , F, Cl) by a BN-Aryne. Chemistry 2022; 28:e202103614. [PMID: 34854508 PMCID: PMC9299606 DOI: 10.1002/chem.202103614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/24/2022]
Abstract
The boron-nitrogen analogue of ortho-benzyne, 1,2-azaborinine, is a reactive intermediate that features a formal boron-nitrogen triple bond. We here show by combining experimental and computational techniques that the Lewis acidity of the boron center of dibenzo[c,e][1,2]azaborinine allows interaction with the silicon containing single bonds Si-E through the silicon bonding partner E (E=F, Cl, OR, H). The binding to boron activates the Si-E bonds for subsequent insertion reaction. This shows that the BN-aryne is a ferocious species that even can activate and insert into the very strong Si-F bond.
Collapse
Affiliation(s)
- Constanze Keck
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Jennifer Hahn
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Divanshu Gupta
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Holger F. Bettinger
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
19
|
Liu M, Cui M, Zhang L, Guo Y, Xu X, Li W, Li Y, Zhen B, Wu X, Liu X. The rapid construction of bis-BN dipyrrolyl[ a,j]anthracenes and a direct comparison with a carbonaceous analogue. Org Chem Front 2022. [DOI: 10.1039/d2qo00083k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of bis-BN dipyrrolyl[a,j]anthracenes and a representative carbonaceous analogue have been synthesized. We studied the optical properties and OLED applications of these BN-PAHs and compared them with the carbonaceous counterpart.
Collapse
Affiliation(s)
- Meiyan Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Mingkuan Cui
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yongkang Guo
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoyang Xu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Wenlong Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Yuanhao Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Bin Zhen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoming Wu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory of Photoelectric Materials and Devices, National Demonstration Center for Experimental Function Materials Education, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
20
|
Morita T, Murakami H, Asawa Y, Nakamura H. Enantioselective Synthesis of Oxazaborolidines by Palladium‐Catalyzed N−H/B−H Double Activation of 1,2‐Azaborines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Hiroki Murakami
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Yasunobu Asawa
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology Tokyo Institute of Technology 4259 Nagatsuta-cho Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
21
|
Li J, Daniliuc CG, Kehr G, Erker G. Three‐Component Reaction to 1,4,2‐Diazaborole‐Type Heteroarene Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| |
Collapse
|
22
|
Li J, Daniliuc CG, Kehr G, Erker G. Three-Component Reaction to 1,4,2-Diazaborole-Type Heteroarene Systems. Angew Chem Int Ed Engl 2021; 60:27053-27061. [PMID: 34597449 DOI: 10.1002/anie.202111946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 12/14/2022]
Abstract
The borane FmesBH2 reacts in a three-component reaction with an isonitrile and a small series of organonitriles to give rare examples of the class of dihydro-1,4,2-diazaborole derivatives. In a related way, annulated BN-indolizine derivatives became conveniently available, as were dihydro-1,4,2-oxaza- or thiazaborole derivatives. The nucleophilic framework of a dihydro-1,4,2-diazaborole example allowed for an uncatalyzed acylation reaction. It also served as a 1,3-dipolar reagent and underwent a [3+2] cycloaddition/[4+2] cycloreversion sequence when treated with methyl propiolate to give the respective pyrrole product. The [3+2] cycloaddition product of a dihydro-1,4,2-diazaborole derivative with N-phenylmaleimide was isolated and its heterobicyclo[2.2.1]heptane derived structure characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| |
Collapse
|
23
|
Morita T, Murakami H, Asawa Y, Nakamura H. Enantioselective Synthesis of Oxazaborolidines by Palladium-Catalyzed N-H/B-H Double Activation of 1,2-Azaborines. Angew Chem Int Ed Engl 2021; 61:e202113558. [PMID: 34913232 DOI: 10.1002/anie.202113558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 01/14/2023]
Abstract
A palladium-catalyzed N-H/B-H double activation of 1,2-dihydro-1,2-benzazaborines proceeded via cycloaddition with vinyl ethylene carbonate to produce polycyclic oxazaborolidines in 31-96 % yield. The key step in this process is the release of molecular hydrogen from a borate intermediate. Using a SPINOL-derived phosphoramidite as a chiral ligand, chiral oxazaborolidines were synthesized in good to high yields with excellent enantioselectivity (up to 95 % ee). The vinyl group of the resulting oxazaborolidine underwent metathesis, Heck reaction, and Wacker oxidation without affecting the oxazaborolidine framework.
Collapse
Affiliation(s)
- Taiki Morita
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
24
|
Ghosh A, Li T, Ni W, Wu T, Liang C, Budanovic M, Morris SA, Klein M, Webster RD, Gurzadyan GG, Grimsdale AC. Synthesis, Optical and Electrochemical Properties of Isomeric Dibenzophenanthroline Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Animesh Ghosh
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Tianjiao Li
- Institute of Artificial Photosynthesis State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Wenjun Ni
- Institute of Artificial Photosynthesis State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Tong Wu
- Institute of Artificial Photosynthesis State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Caihong Liang
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Maja Budanovic
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Samuel A. Morris
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Maciej Klein
- Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Gagik G. Gurzadyan
- Institute of Artificial Photosynthesis State Key Laboratory of Fine Chemicals, Dalian University of Technology 2 Ling Gong Road Dalian 116024 P. R. China
| | - Andrew C. Grimsdale
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| |
Collapse
|
25
|
Fu Y, Chang X, Yang H, Dmitrieva E, Gao Y, Ma J, Huang L, Liu J, Lu H, Cheng Z, Du S, Gao H, Feng X. NBN‐Doped
Bis
‐Tetracene and
Peri
‐Tetracene: Synthesis and Characterization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Xiao Chang
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Yang
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research 01069 Dresden Germany
| | - Yixuan Gao
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Li Huang
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Hongliang Lu
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Zhihai Cheng
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices Renmin University of China Beijing 100872 China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Hong‐Jun Gao
- Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
26
|
Fu Y, Chang X, Yang H, Dmitrieva E, Gao Y, Ma J, Huang L, Liu J, Lu H, Cheng Z, Du S, Gao H, Feng X. NBN-Doped Bis-Tetracene and Peri-Tetracene: Synthesis and Characterization. Angew Chem Int Ed Engl 2021; 60:26115-26121. [PMID: 34519404 PMCID: PMC9298386 DOI: 10.1002/anie.202109808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/12/2021] [Indexed: 02/05/2023]
Abstract
Combining solution-based and surface-assisted synthesis, we demonstrate the first synthesis of NBN-doped bis-tetracene (NBN-BT) and peri-tetracene (NBN-PT). The chemical structures are clearly elucidated by high-resolution scanning tunneling microscopy (STM) in combination with noncontact atomic force microscopy (nc-AFM). Scanning tunneling spectroscopy (STS) characterizations reveal that NBN-BT and NBN-PT possess higher energy gaps than bis-tetracene and peri-tetracene. Interestingly, NBN-BT can undergo stepwise one-electron oxidation and convert into its corresponding radical cation and then to its dication. The energy gap of the NBN-BT dication is similar to that of bis-tetracene, indicating their isoelectronic relationship. Moreover, a similar energy gap between the NBN-PT dication and peri-tetracene can be predicted by DFT calculations. This work provides a novel synthesis along with characterizations of multi-NBN-doped zigzag-edged peri-acenes with tunable electronic properties.
Collapse
Affiliation(s)
- Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Xiao Chang
- Institute of Physics and University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Huan Yang
- Institute of Physics and University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research01069DresdenGermany
| | - Yixuan Gao
- Institute of Physics and University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Li Huang
- Institute of Physics and University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulam RoadHong KongChina
| | - Hongliang Lu
- Institute of Physics and University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Zhihai Cheng
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano DevicesRenmin University of ChinaBeijing100872China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Hong‐Jun Gao
- Institute of Physics and University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| |
Collapse
|
27
|
Zhang J, Yang L, Liu F, Fu Y, Liu J, Popov AA, Ma J, Feng X. A Modular Cascade Synthetic Strategy Toward Structurally Constrained Boron‐Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Fupin Liu
- Center of Spectroelectrochemistry Leibniz Institute for Solid State and Materials Research (IFW) Dresden Helmholtzstrasse 20 01069 Dresden Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Junzhi Liu
- Department of Chemistry State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Alexey A. Popov
- Center of Spectroelectrochemistry Leibniz Institute for Solid State and Materials Research (IFW) Dresden Helmholtzstrasse 20 01069 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| |
Collapse
|
28
|
Zhang J, Yang L, Liu F, Fu Y, Liu J, Popov AA, Ma J, Feng X. A Modular Cascade Synthetic Strategy Toward Structurally Constrained Boron-Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:25695-25700. [PMID: 34623744 PMCID: PMC9298420 DOI: 10.1002/anie.202109840] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2021] [Indexed: 11/28/2022]
Abstract
A novel synthetic strategy was developed for the construction of difficult-to-access structurally constrained boron-doped polycyclic aromatic hydrocarbons (sc-B-PAHs) via a cascade reaction from the readily available ortho-aryl-substituted diarylalkynes. This domino process involves borylative cyclization, 1,4-boron migration and successive two-fold electrophilic borylation. Two types of sc-B-PAHs bearing B-doped [4]helicene (1 a-1 i) or BN-doped [4]helicene (1 n-1 t) and double [4]helicene (1 u-1 v) are constructed by this cascade reaction. Remarkably, this synthetic strategy is characterized by modest yields (20-50 %) and broad substrate scope (18 examples) with versatile functional group tolerance. The resultant sc-B-PAHs show good stability under ambient conditions and are thoroughly investigated by X-ray crystallography, UV/Vis absorption and fluorescence spectroscopy, and cyclic voltammetry. Interestingly enough, BN-doped [4]helicene 1 o forms a unique alternating π-stacked dimer of enantiomers within a helical columnar superstructure, while BN-doped double [4]helicene 1 u establishes an unprecedented π-stacked trimeric sandwich structure with a rare 2D lamellar π-stacking. The synthetic approach reported herein represents a powerful tool for the rapid generation of novel sc-B-PAHs, which are highly attractive for the elucidation of the structure-property relationship and for potential optoelectronic applications.
Collapse
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Fupin Liu
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Junzhi Liu
- Department of ChemistryState Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulam RoadHong KongChina
| | - Alexey A. Popov
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| |
Collapse
|
29
|
Kashida J, Shoji Y, Ikabata Y, Taka H, Sakai H, Hasobe T, Nakai H, Fukushima T. An Air- and Water-Stable B 4 N 4 -Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angew Chem Int Ed Engl 2021; 60:23812-23818. [PMID: 34467608 DOI: 10.1002/anie.202110050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/12/2022]
Abstract
Replacement of the carbon-carbon bonds of antiaromatic compounds with polar boron-nitrogen bonds often provides isoelectronic BN compounds with excellent thermodynamic stability and interesting photophysical properties. By this element-substitution strategy, we synthesized a new B4 N4 -heteropentalene derivative, 1, which is fully substituted with mesityl groups. Owing to kinetic protection by the sterically bulky substituents, 1 is remarkably stable toward air and even water. Single-crystal X-ray analysis of 1 revealed the bonding characteristics of the B4 N4 -heteropentalene structure. In a glassy matrix, 1 emitted short-wavelength phosphorescence with an onset at 350 nm, indicating that the triplet energy is substantially high. DFT calculations reasonably explained the ground- and excited-state electronic structures of 1 as well as its emission properties. Motivated by the high-energy triplet state of 1, we used it as a host material to fabricate a phosphorescent organic light-emitting diode with an external quantum efficiency of 15 %.
Collapse
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.,Present address: Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Hideo Taka
- Konica Minolta, Ishikawa-cho, Hachioji, Tokyo, 192-8505, Japan
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, Yokohama, 223-8522, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.,Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
30
|
Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Construction of Heptagon-Containing Molecular Nanocarbons. Angew Chem Int Ed Engl 2021; 60:23508-23532. [PMID: 33547701 DOI: 10.1002/anie.202100260] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Molecular nanocarbons containing heptagonal rings have attracted increasing interest due to their dynamic behavior, electronic properties, aromaticity, and solid-state packing. Heptagon incorporation can not only induce negative curvature within nanocarbon scaffolds, but also confer significantly altered properties through interaction with adjacent non-hexagonal rings. Despite the disclosure of several beautiful examples in recent years, synthetic strategies toward heptagon-embedded molecular nanocarbons remain relatively limited due to the intrinsic challenges of heptagon formation and incorporation into polyarene frameworks. In this Review, recent advances in solution-mediated and surface-assisted synthesis of heptagon-containing molecular nanocarbons, as well as the intriguing properties of these frameworks, will be discussed.
Collapse
Affiliation(s)
- Chaolumen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan, R.O.C
| |
Collapse
|
31
|
Kashida J, Shoji Y, Ikabata Y, Taka H, Sakai H, Hasobe T, Nakai H, Fukushima T. An Air‐ and Water‐Stable B
4
N
4
‐Heteropentalene Serving as a Host Material for a Phosphorescent OLED. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Junki Kashida
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering Waseda University Tokyo 169-8555 Japan
- Present address: Information and Media Center Toyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho Toyohashi Aichi 441-8580 Japan
| | - Hideo Taka
- Konica Minolta, Ishikawa-cho, Hachioji Tokyo 192-8505 Japan
| | - Hayato Sakai
- Department of Chemistry Faculty of Science and Technology Keio University Yokohama 223-8522 Japan
| | - Taku Hasobe
- Department of Chemistry Faculty of Science and Technology Keio University Yokohama 223-8522 Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering Waseda University Tokyo 169-8555 Japan
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University Tokyo 169-8555 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
32
|
Zhang PF, Zeng JC, Zhuang FD, Zhao KX, Sun ZH, Yao ZF, Lu Y, Wang XY, Wang JY, Pei J. Parent B 2 N 2 -Perylenes with Different BN Orientations. Angew Chem Int Ed Engl 2021; 60:23313-23319. [PMID: 34431600 DOI: 10.1002/anie.202108519] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 11/07/2022]
Abstract
Introducing BN units into polycyclic aromatic hydrocarbons expands the chemical space of conjugated materials with novel properties. However, it is challenging to achieve accurate synthesis of BN-PAHs with specific BN positions and orientations. Here, three new parent B2 N2 -perylenes with different BN orientations are synthesized with BN-naphthalene as the building block, providing systematic insight into the effects of BN incorporation with different orientations on the structure, (anti)aromaticity, crystal packing and photophysical properties. The intermolecular dipole-dipole interaction shortens the π-π stacking distance. The crystal structure, (anti)aromaticity, and photophysical properties vary with the change of BN orientation. The revealed BN doping effects may provide a guideline for the synthesis of BN-PAHs with specific stacking structures, and the synthetic strategy employed here can be extended toward the synthesis of larger BN-embedded PAHs with adjustable BN patterns.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jing-Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang-Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ke-Xiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Hao Sun
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
33
|
Ghosh A, Budanovic M, Li T, Liang C, Klein M, Soci C, Webster RD, Gurzadyan GG, Grimsdale AC. Synthesis of 5‐Azatetracene and Comparison of Its Optical and Electrochemical Properties with Tetracene. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Animesh Ghosh
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Maja Budanovic
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Tianjiao Li
- Institute of Artificial Photosynthesis State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Caihong Liang
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| | - Maciej Klein
- Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
- Energy Research Institute @ NTU (ERI@N) Research Techno Plaza Nanyang Technological University 50 Nanyang Drive 637553 Singapore
| | - Cesare Soci
- Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Gagik G. Gurzadyan
- Institute of Artificial Photosynthesis State Key Laboratory of Fine Chemicals Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| | - Andrew C. Grimsdale
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue 639798 Singapore
| |
Collapse
|
34
|
Ito M, Sakai M, Ando N, Yamaguchi S. Electron-Deficient Heteroacenes that Contain Two Boron Atoms: Near-Infrared Fluorescence Based on a Push-Pull Effect*. Angew Chem Int Ed Engl 2021; 60:21853-21859. [PMID: 34115434 DOI: 10.1002/anie.202106642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Electron-deficient heteroacenes that contain two tricoordinate boron atoms in their acene skeletons and planarized phenyl ether moieties at their periphery were synthesized via the borylation of silicon-bridged precursors. X-ray crystallographic analysis revealed quinoidal structures, which give rise to two-step reversible redox processes for both the reduction and oxidation. These compounds exhibit intense absorption and sharp fluorescence bands with vibronic structures in the near-infrared (NIR) region. These properties originate from the push-pull effect along the long axis of the molecule derived from the electron-donating ether moieties and the electron-accepting boron moieties. Of particular note is the NIR emission of the thienothiophene-centered heteroacene, which has a maximum at 952 nm with a narrow band width of 309 cm-1 in cyclohexane. A Franck-Condon analysis revealed the crucial role of the sterically less-hindered thienothiophene spacer in achieving this sharp emission band.
Collapse
Affiliation(s)
- Masato Ito
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
35
|
Ito M, Sakai M, Ando N, Yamaguchi S. Electron‐Deficient Heteroacenes that Contain Two Boron Atoms: Near‐Infrared Fluorescence Based on a Push–Pull Effect**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masato Ito
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Mika Sakai
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Furo Chikusa Nagoya 464–8601 Japan
| |
Collapse
|
36
|
Zhao M, Miao Q. Design, Synthesis and Hydrogen Bonding of B 3 N 6 -[4]Triangulene. Angew Chem Int Ed Engl 2021; 60:21289-21294. [PMID: 34343393 DOI: 10.1002/anie.202109326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Indexed: 12/22/2022]
Abstract
Replacement of the allylic C=C-C unit with a N-B-N unit at each of the three zigzag edges of [4]triangulene gives rise to B3 N6 -[4]triangulene, which is envisioned to represent a key structural unit of a new hypothetical boron carbon nitride (BC4 N). A tert-butylated B3 N6 -[4]triangulene has been successfully synthesized by three-fold nitrogen-directed borylation, and the X-ray crystallographic analysis indicates that its slightly bent triangular polycyclic framework can be viewed as a 1,3,5-triphenylbenzene connected by three 4π-electron N-B-N units. The HN-B-NH moiety provides a dual hydrogen-bond donor, which forms H-bonds with halide or carboxylate anions in solution, and form DD-AA hydrogen-bond arrays with 2,7-di(tert-butyl)-pyrene-4,5,9,10-tetraone in the co-crystal. Moreover, the blue fluorescence of B3 N6 -[4]triangulene in solution is responsive to binding p-nitrobenzoate anion through hydrogen bonds.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
37
|
Zhao M, Miao Q. Design, Synthesis and Hydrogen Bonding of B
3
N
6
‐[4]Triangulene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengna Zhao
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| | - Qian Miao
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| |
Collapse
|
38
|
Zhang P, Zeng J, Zhuang F, Zhao K, Sun Z, Yao Z, Lu Y, Wang X, Wang J, Pei J. Parent B
2
N
2
‐Perylenes with Different BN Orientations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peng‐Fei Zhang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jing‐Cai Zeng
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Fang‐Dong Zhuang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ke‐Xiang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Hao Sun
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Fan Yao
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yang Lu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
39
|
Chen C, Daniliuc CG, Kehr G, Erker G. Formation and Cycloaddition Reactions of a Reactive Boraalkene Stabilized Internally by N-Heterocyclic Carbene. Angew Chem Int Ed Engl 2021; 60:19905-19911. [PMID: 34219331 DOI: 10.1002/anie.202106724] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/28/2021] [Indexed: 01/07/2023]
Abstract
The synthesis of element-carbon double bonds is of great importance for the development and understanding of reactive π-bonded systems in chemistry. The seven-membered heterocyclic system 4 b is readily made by internal C-H activation at a pendent isopropyl methyl group of the respective [(IPr)C6 F5 BH]+ borenium ion. Subsequent deprotonation with the IMes carbene gives the neutral cyclic boraalkene system 5 b. The B=C double bond in compound 5 b adds carbon dioxide, CS2 , sulfur dioxide, phenyl isocyanate, an acetylenic ester or two NO molecules to give the corresponding four-membered ring annulated heterocycles. With sulfur or selenium 5 b gives the respective three-membered ring systems. N2 O reacts with 5 b to give a mixture of the related oxaborirane 18 and a unique [B]OH containing diazoalkane product 19.
Collapse
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
40
|
Chen C, Daniliuc CG, Kehr G, Erker G. Formation and Cycloaddition Reactions of a Reactive Boraalkene Stabilized Internally by
N
‐Heterocyclic Carbene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chaohuang Chen
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
41
|
Fingerle M, Dingerkus J, Schubert H, Wurst KM, Scheele M, Bettinger HF. Heteroatom Cycloaddition at the (BN)
2
Bay Region of Dibenzoperylene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael Fingerle
- Institut für Organische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Juliane Dingerkus
- Institut für Organische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Hartmut Schubert
- Institut für Anorganische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Kai M. Wurst
- Institut für Physikalische und Theoretische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marcus Scheele
- Institut für Physikalische und Theoretische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Holger F. Bettinger
- Institut für Organische Chemie Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
42
|
Fingerle M, Dingerkus J, Schubert H, Wurst KM, Scheele M, Bettinger HF. Heteroatom Cycloaddition at the (BN) 2 Bay Region of Dibenzoperylene. Angew Chem Int Ed Engl 2021; 60:15798-15802. [PMID: 33798286 PMCID: PMC9545313 DOI: 10.1002/anie.202016699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 11/12/2022]
Abstract
Cycloaddition-dehydration involving a BNBN-butadiene analogue at the bay region of a dibenzoperylene and a non-enolizable aldehyde provides a novel strategy for incorporation of the oxadiazadiborinane (B2 N2 CO) ring into the scaffold of a polycyclic aromatic hydrocarbon resulting in highly emissive compounds.
Collapse
Affiliation(s)
- Michael Fingerle
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Juliane Dingerkus
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Hartmut Schubert
- Institut für Anorganische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Kai M. Wurst
- Institut für Physikalische und Theoretische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Marcus Scheele
- Institut für Physikalische und Theoretische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Holger F. Bettinger
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
43
|
|
44
|
Heß M, Krummenacher I, Dellermann T, Braunschweig H. Rhodium-Mediated Stoichiometric Synthesis of Mono-, Bi-, and Bis-1,2-Azaborinines: 1-Rhoda-3,2-azaboroles as Reactive Precursors. Chemistry 2021; 27:9503-9507. [PMID: 34060149 PMCID: PMC8362125 DOI: 10.1002/chem.202100795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/22/2022]
Abstract
A series of highly substituted 1,2-azaborinines, including a phenylene-bridged bis-1,2-azaborinine, was synthesized from the reaction of 1,2-azaborete rhodium complexes with variously substituted alkynes. 1-Rhoda-3,2-azaborole complexes, which are accessible by phosphine addition to the corresponding 1,2-azaborete complexes, were also found to be suitable precursors for the synthesis of 1,2-azaborinines and readily reacted with alkynyl-substituted 1,2-azaborinines to generate new regioisomers of bi-1,2-azaborinines, which feature directly connected aromatic rings. Their molecular structures, which can be viewed as boron-nitrogen isosteres of biphenyls, show nearly perpendicular 1,2-azaborinine rings. The new method using rhodacycles instead of 1,2-azaborete complexes as precursors is shown to be more effective, allowing the synthesis of a wider range of 1,2-azaborinines.
Collapse
Affiliation(s)
- Merlin Heß
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Theresa Dellermann
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute for Inorganic ChemistryJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
- Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
45
|
Zhu D, Guo L, Li J, Cui C. From BN-Naphthalenes to Benzoborole Dianions. Chemistry 2021; 27:9514-9518. [PMID: 33909296 DOI: 10.1002/chem.202101178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 01/02/2023]
Abstract
The synthesis of benzoborole dianions by alkali metal reduction of BN-naphthalene derivatives via a ring-contraction strategy has been developed. Reduction of 1-alkynyl 2,1-benzazaborine 1 a in Et2 O led to the elimination of alkynyllithium with the formation of 1-amino-1-benzoborole trilithium salt 2 a, whereas reduction of 1-phenyl 2,1-benzazaborine 1 c in THF yielded 1-phenyl-1-benzoborole dilithium salt 2 c with the elimination of ArNHLi. The trilithium and dilithium salts 2 a and 2 c have been fully characterized. Treatment of trilithium salt 2 a with Et3 NHCl led to the selective protonation of the amino lithium to afford the dilithium salt 2 aH, which could be cleanly oxidized to 1-amino-1-benzoborole 3 in an excellent yield. Reaction of 1-phenyl-1-benzoborole dilithium salt 2 c with MeI yielded the lithium borate 4 c, which is luminescent both in solution and in the solid state.
Collapse
Affiliation(s)
- Dezhao Zhu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
46
|
Gotoh H, Nakatsuka S, Tanaka H, Yasuda N, Haketa Y, Maeda H, Hatakeyama T. Syntheses and Physical Properties of Cationic BN‐Embedded Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hajime Gotoh
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Soichiro Nakatsuka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry College of Life Sciences Ritsumeikan University 1-1-1 Kusatsu Shiga 525-8577 Japan
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute (JASRI) 1-1-1, Kouto, Sayo-cho Sayo-gun Hyogo 679-5198 Japan
| | - Yohei Haketa
- Department of Applied Chemistry College of Life Sciences Ritsumeikan University 1-1-1 Kusatsu Shiga 525-8577 Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry College of Life Sciences Ritsumeikan University 1-1-1 Kusatsu Shiga 525-8577 Japan
| | - Takuji Hatakeyama
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
47
|
Akahori S, Sasamori T, Shinokubo H, Miyake Y. Quadruply BN-Fused Tetrathia[8]circulenes with Flexible Frameworks: Synthesis, Structures and Properties. Chemistry 2021; 27:8178-8184. [PMID: 33822395 DOI: 10.1002/chem.202100454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Quadruply BN-fused tetrathia[8]circulenes were synthesized through four-fold electrophilic borylation. The single-crystal X-ray diffraction analysis revealed that the BN-fused tetrathia[8]circulene with peripheral phenyl groups exhibits crystal polymorphism, in which the circulene core adopts both planar and saddle conformations in the solid state. The experimental and theoretical studies revealed that the weaker aromaticity of azaborine compared with benzene renders the flexibility of the BN-fused tetrathia[8]circulenes.
Collapse
Affiliation(s)
- Shuhei Akahori
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan)
| | - Takahiro Sasamori
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan)
| | - Yoshihiro Miyake
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan)
| |
Collapse
|
48
|
Gotoh H, Nakatsuka S, Tanaka H, Yasuda N, Haketa Y, Maeda H, Hatakeyama T. Syntheses and Physical Properties of Cationic BN-Embedded Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:12835-12840. [PMID: 33749982 DOI: 10.1002/anie.202103488] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 11/10/2022]
Abstract
Cationic BN-embedded polycyclic aromatic hydrocarbons (BN-PAH+ s) were synthesized from a nitrogen-containing macrocycle via pyridine-directed tandem C-H borylation. Incorporating BN into PAH+ resulted in a remarkable hypsochromic shift due to an increase in the LUMO energy and the symmetry changes of the HOMO and LUMO. Electrophilic substitution or anion exchange of BN-PAH+ possessing tetrabromoborate as a counter anion (BN+ [BBr4 - ]) afforded air-stable BN-PAH/PAH+ s. Of these, BN+ [TfO- ] allowed reversible two-electron reduction and the formation of two-dimensional brickwork-type π-electronic ion pair with 1,2,3,4,5-pentacyanocyclopentadienyl anion, demonstrating the potential application of BN-PAH+ as electronic materials.
Collapse
Affiliation(s)
- Hajime Gotoh
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry College of Life Sciences, Ritsumeikan University, 1-1-1 Kusatsu, Shiga, 525-8577, Japan
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yohei Haketa
- Department of Applied Chemistry College of Life Sciences, Ritsumeikan University, 1-1-1 Kusatsu, Shiga, 525-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry College of Life Sciences, Ritsumeikan University, 1-1-1 Kusatsu, Shiga, 525-8577, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
49
|
Bhattacharjee A, Davies GHM, Saeednia B, Wisniewski SR, Molander GA. Selectivity in the Elaboration of Bicyclic Borazarenes. Adv Synth Catal 2021; 363:2256-2273. [PMID: 34335130 PMCID: PMC8323665 DOI: 10.1002/adsc.202001384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Among aromatic compounds, borazarenes represent a significant class of isosteres in which carbon-carbon bonds have been replaced by B-N bonds. Described herein is a summary of the selective reactions that have been developed for known systems, as well as a summary of computationally-based predictions of selectivities that might be anticipated in reactions of yet unrealized substructures.
Collapse
Affiliation(s)
- Ayan Bhattacharjee
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Geraint H M Davies
- Small Molecule Drug Development, Bristol Myers Squibb Company, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Borna Saeednia
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
50
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene‐Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|