1
|
Krammer L, Breinbauer R. Activity‐Based Protein Profiling of Oxidases and Reductases. Isr J Chem 2023. [DOI: 10.1002/ijch.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Leo Krammer
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
- BIOTECHMED Graz A-8010 Graz Austria
| |
Collapse
|
2
|
Ivkovic J, Jha S, Lembacher-Fadum C, Puschnig J, Kumar P, Reithofer V, Gruber K, Macheroux P, Breinbauer R. Efficient Entropy-Driven Inhibition of Dipeptidyl Peptidase III by Hydroxyethylene Transition-State Peptidomimetics. Chemistry 2021; 27:14108-14120. [PMID: 34314529 PMCID: PMC8518066 DOI: 10.1002/chem.202102204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Dipeptidyl peptidase III (DPP3) is a ubiquitously expressed Zn‐dependent protease, which plays an important role in regulating endogenous peptide hormones, such as enkephalins or angiotensins. In previous biophysical studies, it could be shown that substrate binding is driven by a large entropic contribution due to the release of water molecules from the closing binding cleft. Here, the design, synthesis and biophysical characterization of peptidomimetic inhibitors is reported, using for the first time an hydroxyethylene transition‐state mimetic for a metalloprotease. Efficient routes for the synthesis of both stereoisomers of the pseudopeptide core were developed, which allowed the synthesis of peptidomimetic inhibitors mimicking the VVYPW‐motif of tynorphin. The best inhibitors inhibit DPP3 in the low μM range. Biophysical characterization by means of ITC measurement and X‐ray crystallography confirm the unusual entropy‐driven mode of binding. Stability assays demonstrated the desired stability of these inhibitors, which efficiently inhibited DPP3 in mouse brain homogenate.
Collapse
Affiliation(s)
- Jakov Ivkovic
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | | | - Johannes Puschnig
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Prashant Kumar
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Viktoria Reithofer
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstr. 50, 8010, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| |
Collapse
|
3
|
Chen D, Xiao Z, Guo H, Gogishvili D, Setroikromo R, Wouden PE, Dekker FJ. Identification of a Bromodomain‐like Region in 15‐Lipoxygenase‐1 Explains Its Nuclear Localization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Deng Chen
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Zhangping Xiao
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Hao Guo
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Dea Gogishvili
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Rita Setroikromo
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Petra E. Wouden
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
4
|
Chen D, Xiao Z, Guo H, Gogishvili D, Setroikromo R, van der Wouden PE, Dekker FJ. Identification of a Bromodomain-like Region in 15-Lipoxygenase-1 Explains Its Nuclear Localization. Angew Chem Int Ed Engl 2021; 60:21875-21883. [PMID: 34388301 PMCID: PMC8518382 DOI: 10.1002/anie.202106968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 01/17/2023]
Abstract
Lipoxygenase (LOX) activity provides oxidative lipid metabolites, which are involved in inflammatory disorders and tumorigenesis. Activity-based probes to detect the activity of LOX enzymes in their cellular context provide opportunities to explore LOX biology and LOX inhibition. Here, we developed Labelox B as a potent covalent LOX inhibitor for one-step activity-based labeling of proteins with LOX activity. Labelox B was used to establish an ELISA-based assay for affinity capture and antibody-based detection of specific LOX isoenzymes. Moreover, Labelox B enabled efficient activity-based labeling of endogenous LOXs in living cells. LOX proved to localize in the nucleus, which was rationalized by identification of a functional bromodomain-like consensus motif in 15-LOX-1. This indicates that 15-LOX-1 is not only involved in oxidative lipid metabolism, but also in chromatin binding, which suggests a potential role in chromatin modifications.
Collapse
Affiliation(s)
- Deng Chen
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Zhangping Xiao
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Hao Guo
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Dea Gogishvili
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Rita Setroikromo
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Petra E van der Wouden
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Frank J Dekker
- Department Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| |
Collapse
|
5
|
Khiar‐Fernández N, Macicior J, Marcos‐Ramiro B, Ortega‐Gutiérrez S. Chemistry for the Identification of Therapeutic Targets: Recent Advances and Future Directions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nora Khiar‐Fernández
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Jon Macicior
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Beatriz Marcos‐Ramiro
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| | - Silvia Ortega‐Gutiérrez
- Department of Organic Chemistry School of Chemistry Universidad Complutense de Madrid Plaza de las Ciencias s/n 28040 Madrid Spain
| |
Collapse
|
6
|
Fuerst R, Breinbauer R. Activity-Based Protein Profiling (ABPP) of Oxidoreductases. Chembiochem 2021; 22:630-638. [PMID: 32881211 PMCID: PMC7894341 DOI: 10.1002/cbic.202000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Over the last two decades, activity-based protein profiling (ABPP) has been established as a tremendously useful proteomic tool for measuring the activity of proteins in their cellular context, annotating the function of uncharacterized proteins, and investigating the target profile of small-molecule inhibitors. Unlike hydrolases and other enzyme classes, which exhibit a characteristic nucleophilic residue, oxidoreductases have received much less attention in ABPP. In this minireview, the state of the art of ABPP of oxidoreductases is described and the scope and limitations of the existing approaches are discussed. It is noted that several ABPP probes have been described for various oxidases, but none so far for a reductase, which gives rise to opportunities for future research.
Collapse
Affiliation(s)
- Rita Fuerst
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
- BIOTECHMEDGrazAustria
| |
Collapse
|
7
|
Eleftheriadis N, Thee SA, Zwinderman MRH, Leus NGJ, Dekker FJ. Activity-Based Probes for 15-Lipoxygenase-1. Angew Chem Int Ed Engl 2016; 55:12300-5. [PMID: 27612308 PMCID: PMC5218545 DOI: 10.1002/anie.201606876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Human 15-lipoxygenase-1 (15-LOX-1) plays an important role in several inflammatory lung diseases, such as asthma, COPD, and chronic bronchitis, as well as various CNS diseases, such as Alzheimer's disease, Parkinson's disease, and stroke. Activity-based probes of 15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery. In this study, we developed a 15-LOX-1 activity-based probe for the efficient activity-based labeling of recombinant 15-LOX-1. 15-LOX-1-dependent labeling in cell lysates and tissue samples was also possible. To mimic the natural substrate of the enzyme, we designed activity-based probes that covalently bind to the active enzyme and include a terminal alkene as a chemical reporter for the bioorthogonal linkage of a detectable functionality through an oxidative Heck reaction. The activity-based labeling of 15-LOX-1 should enable the investigation and identification of this enzyme in complex biological samples, thus opening up completely new opportunities for drug discovery.
Collapse
Affiliation(s)
- Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Stephanie A Thee
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Martijn R H Zwinderman
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niek G J Leus
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
8
|
Eleftheriadis N, Thee SA, Zwinderman MRH, Leus NGJ, Dekker FJ. Activity-Based Probes for 15-Lipoxygenase-1. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Nikolaos Eleftheriadis
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Stephanie A. Thee
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Martijn R. H. Zwinderman
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Niek G. J. Leus
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical Biology; Groningen Research Institute of Pharmacy; University of Groningen; Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
9
|
McCulloch IP, La Clair JJ, Jaremko MJ, Burkart MD. Fluorescent Mechanism-Based Probe for Aerobic Flavin-Dependent Enzyme Activity. Chembiochem 2016; 17:1598-601. [PMID: 27271974 DOI: 10.1002/cbic.201600275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 12/27/2022]
Abstract
Diversity in non-ribosomal peptide and polyketide secondary metabolism is facilitated by interactions between biosynthetic domains with discrete monomer loading and their cognate tailoring enzymes, such as oxidation or halogenation enzymes. The cooperation between peptidyl carrier proteins and flavin-dependent enzymes offers a specialized strategy for monomer selectivity for oxidization of small molecules from within a complex cellular milieu. In an effort to study this process, we have developed fluorescent probes to selectively label aerobic flavin-dependent enzymes. Here we report the preparation and implementation of these tools to label oxidase, monooxygenase, and halogenase flavin-dependent enzymes.
Collapse
Affiliation(s)
- Ian P McCulloch
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0358, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0358, USA
| | - Matt J Jaremko
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0358, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA, 92093-0358, USA.
| |
Collapse
|
10
|
Lehmann J, Wright MH, Sieber SA. Making a Long Journey Short: Alkyne Functionalization of Natural Product Scaffolds. Chemistry 2016; 22:4666-78. [PMID: 26752308 DOI: 10.1002/chem.201504419] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/09/2023]
Abstract
Biological selection makes natural products promising scaffolds for drug development and the ever growing number of newly identified, structurally diverse molecules helps to fill the gaps in chemical space. Elucidating the function of a small molecule, such as identifying its protein binding partners, its on- and off-targets, is becoming increasingly important. Activity- and affinity-based protein profiling are modern strategies to acquire such molecular-level information. Introduction of a molecular handle (azide, alkyne, biotin) can shed light on the mode of action of small molecules. This Concept article covers central points on synthetic methodology for integrating a terminal alkyne into a molecule of interest.
Collapse
Affiliation(s)
- Johannes Lehmann
- Center for Integrated Protein Science, Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Megan H Wright
- Center for Integrated Protein Science, Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science, Munich (CIPSM), Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany.
| |
Collapse
|
11
|
Li L, Zhang CW, Ge J, Qian L, Chai BH, Zhu Q, Lee JS, Lim KL, Yao SQ. A Small-Molecule Probe for Selective Profiling and Imaging of Monoamine Oxidase B Activities in Models of Parkinson’s Disease. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Li L, Zhang CW, Ge J, Qian L, Chai BH, Zhu Q, Lee JS, Lim KL, Yao SQ. A Small-Molecule Probe for Selective Profiling and Imaging of Monoamine Oxidase B Activities in Models of Parkinson’s Disease. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201504441] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Yang P, Liu K. Activity-based protein profiling: recent advances in probe development and applications. Chembiochem 2015; 16:712-24. [PMID: 25652106 DOI: 10.1002/cbic.201402582] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 11/08/2022]
Abstract
The completion of the human genome sequencing project has provided a wealth of new information regarding the genomic blueprint of the cell. Although, to date, there are roughly 20,000 genes in the human genome, the functions of only a handful of proteins are clear. The major challenge lies in translating genomic information into an understanding of their cellular functions. The recently developed activity-based protein profiling (ABPP) is an unconventional approach that is complementary for gene expression analysis and an ideal utensil in decoding this overflow of genomic information. This approach makes use of synthetic small molecules that covalently modify a set of related proteins and subsequently facilitates identification of the target protein, enabling rapid biochemical analysis and inhibitor discovery. This tutorial review introduces recent advances in the field of ABPP and its applications.
Collapse
Affiliation(s)
- Pengyu Yang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 (USA)
| | | |
Collapse
|
14
|
Willems LI, Jiang J, Li KY, Witte MD, Kallemeijn WW, Beenakker TJN, Schröder SP, Aerts JMFG, van der Marel GA, Codée JDC, Overkleeft HS. From Covalent Glycosidase Inhibitors to Activity-Based Glycosidase Probes. Chemistry 2014; 20:10864-72. [DOI: 10.1002/chem.201404014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Rudolf GC, Sieber SA. Copper-assisted click reactions for activity-based proteomics: fine-tuned ligands and refined conditions extend the scope of application. Chembiochem 2013; 14:2447-55. [PMID: 24166841 DOI: 10.1002/cbic.201300551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 12/26/2022]
Abstract
Copper-catalysed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) is the predominantly used bioconjugation method in the field of activity-based protein profiling (ABPP). Several limitations, however, including conversion efficiency, protein denaturation and buffer compatibility, restrict the scope of established procedures. We introduce an ABPP customised click methodology based on refined CuAAC conditions together with new accelerating copper ligands. A screen of several triazole compounds revealed the cationic quaternary {3-[4-({bis[(1-tert-butyl-1H-1,2,3-triazol-4-yl)methyl]amino}methyl)-1H-1,2,3-triazol-1-yl]propyl}trimethylammonium trifluoroacetate (TABTA) to be a superior ligand. TABTA exhibited excellent in vitro conjugation kinetics and optimal ABPP labelling activity while almost exclusively preserving the native protein fold. The application of this CuAAC-promoting system is amenable to existing protocols with minimal perturbations and is even compatible with previously unusable buffer systems such as Tris⋅HCl.
Collapse
Affiliation(s)
- Georg C Rudolf
- Fakultät für Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstraße 4, 85748 Garching (Germany)
| | | |
Collapse
|
16
|
Yang KS, Budin G, Tassa C, Kister O, Weissleder R. Bioorthogonal Approach to Identify Unsuspected Drug Targets in Live Cells. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Yang KS, Budin G, Tassa C, Kister O, Weissleder R. Bioorthogonal approach to identify unsuspected drug targets in live cells. Angew Chem Int Ed Engl 2013; 52:10593-7. [PMID: 23960025 DOI: 10.1002/anie.201304096] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Indexed: 11/12/2022]
Abstract
A proteomics method to pull down secondary drug targets from live cells is described. The drug of interest is modified with trans-cyclooctene (TCO) and incubated with live cells. Upon cell lysis, the modified drug bound to the protein is pulled down using magnetic beads decorated with a cleavable tetrazine-modified linker. Samples are then run on an SDS-PAGE gel and isolated bands are submitted for mass spectrometry analysis to identify drug targets.
Collapse
Affiliation(s)
- Katherine S Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 (USA)
| | | | | | | | | |
Collapse
|
18
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Identifizierung der Zielproteine bioaktiver Verbindungen: Die Suche nach der Nadel im Heuhaufen. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208749] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Ziegler S, Pries V, Hedberg C, Waldmann H. Target identification for small bioactive molecules: finding the needle in the haystack. Angew Chem Int Ed Engl 2013; 52:2744-92. [PMID: 23418026 DOI: 10.1002/anie.201208749] [Citation(s) in RCA: 360] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 01/10/2023]
Abstract
Identification and confirmation of bioactive small-molecule targets is a crucial, often decisive step both in academic and pharmaceutical research. Through the development and availability of several new experimental techniques, target identification is, in principle, feasible, and the number of successful examples steadily grows. However, a generic methodology that can successfully be applied in the majority of the cases has not yet been established. Herein we summarize current methods for target identification of small molecules, primarily for a chemistry audience but also the biological community, for example, the chemist or biologist attempting to identify the target of a given bioactive compound. We describe the most frequently employed experimental approaches for target identification and provide several representative examples illustrating the state-of-the-art. Among the techniques currently available, protein affinity isolation using suitable small-molecule probes (pulldown) and subsequent mass spectrometric analysis of the isolated proteins appears to be most powerful and most frequently applied. To provide guidance for rapid entry into the field and based on our own experience we propose a typical workflow for target identification, which centers on the application of chemical proteomics as the key step to generate hypotheses for potential target proteins.
Collapse
Affiliation(s)
- Slava Ziegler
- Max-Planck-Institut für molekulare Physiologie, Abt. Chemische Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | | | | | |
Collapse
|