1
|
Zhang C, Zheng T, Ma Q, Yang L, Zhang M, Wang J, Teng X, Miao Y, Lin HC, Yang Y, Han D. Logical Analysis of Multiple Single-Nucleotide-Polymorphisms with Programmable DNA Molecular Computation for Clinical Diagnostics. Angew Chem Int Ed Engl 2022; 61:e202117658. [PMID: 35137499 DOI: 10.1002/anie.202117658] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Analyzing complex single-nucleotide-polymorphism (SNP) combinations in the genome is important for research and clinical applications, given that different SNP combinations can generate different phenotypic consequences. Recent works have shown that DNA-based molecular computing is powerful for simultaneously sensing and analyzing complex molecular information. Here, we designed a switching circuit-based DNA computational scheme that can integrate the sensing of multiple SNPs and simultaneously perform logical analysis of the detected SNP information to directly report clinical outcomes. As a demonstration, we successfully achieved automatic and accurate identification of 21 different blood group genotypes from 83 clinical blood samples with 100 % accuracy compared to sequencing data in a more rapid manner (3 hours). Our method enables a new mode of automatic and logical sensing and analyzing subtle molecular information for clinical diagnosis, as well as guiding personalized medication.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tingting Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junyan Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoyan Teng
- Department of Laboratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 201306, China
| | - Yanyan Miao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hsiao-Chu Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
2
|
Zhang C, Zheng T, Ma Q, Yang L, Zhang M, Wang J, Teng X, Miao Y, Lin H, Yang Y, Han D. Logical Analysis of Multiple Single‐Nucleotide‐Polymorphisms with Programmable DNA Molecular Computation for Clinical Diagnostics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Tingting Zheng
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Qian Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Linlin Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Junyan Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaoyan Teng
- Department of Laboratory Medicine Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 201306 China
| | - Yanyan Miao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Hsiao‐chu Lin
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yang Yang
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai 200433 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
3
|
Gomes de Oliveira AG, Dubovichenko MV, ElDeeb AA, Wanjohi J, Zablotskaya S, Kolpashchikov DM. RNA-Cleaving DNA Thresholder Controlled by Concentrations of miRNA Cancer Marker. Chembiochem 2021; 22:1750-1754. [PMID: 33433948 DOI: 10.1002/cbic.202000769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Indexed: 11/10/2022]
Abstract
Oligonucleotide gene therapy (OGT) agents suppress specific mRNAs in cells and thus reduce the expression of targeted genes. The ability to unambiguously distinguish cancer from healthy cells can solve the low selectivity problem of OGT agents. Cancer RNA markers are expressed in both healthy and cancer cells with a higher expression level in cancer cells. We have designed a DNA-based construct, named DNA thresholder (DTh) that cleaves targeted RNA only at high concentrations of cancer marker RNA and demonstrates low cleavage activity at low marker concentrations. The RNA-cleaving activity can be adjusted within one order of magnitude of the cancer marker RNA concentration by simply redesigning DTh. Importantly, DTh recognizes cancer marker RNA, while cleaving targeted RNA; this offers a possibility to suppress vital genes exclusively in cancer cells, thus triggering their death. DTh is a prototype of computation-inspired molecular device for controlling gene expression and cancer treatment.
Collapse
Affiliation(s)
- Andrey Giovanni Gomes de Oliveira
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Mikhail V Dubovichenko
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Ahmed A ElDeeb
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Joseph Wanjohi
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Sofia Zablotskaya
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation
| | - Dmitry M Kolpashchikov
- SCAMT institute, Laboratory of Molecular Robotics and Biosensor Materials, ITMO University, 9 Lomonosova Str., 191002, St. Petersburg, Russian Federation.,Chemistry Department, University of Central Florida, 32816-2366, Orlando, FL, USA.,Burnett School of Biomedical Sciences, University of Central Florida, 32816, Orlando, FL, USA
| |
Collapse
|
4
|
Molden TA, Grillo MC, Kolpashchikov DM. Manufacturing Reusable NAND Logic Gates and Their Initial Circuits for DNA Nanoprocessors. Chemistry 2020; 27:2421-2426. [DOI: 10.1002/chem.202003959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/30/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Tatiana A. Molden
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| | - Marcella C. Grillo
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| | - Dmitry M. Kolpashchikov
- Chemistry Department University of Central Florida 4111 Libra Drive, Physical Sciences 255 Orlando FL 32816-2366 USA
| |
Collapse
|
5
|
Iwe IA, Li Z, Huang J. A dual-cycling fluorescence scheme for ultrasensitive DNA detection through signal amplification and target regeneration. Analyst 2019; 144:2649-2655. [PMID: 30843550 DOI: 10.1039/c9an00075e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we propose an ultrasensitive fluorescence strategy for DNA detection. This method utilizes a molecular beacon (MB), a hairpin probe (HP), and an enzyme to trigger dual-cycling reactions (cycles I and II). In cycle I, the target is repeatedly used to amplify the fluorescence emission through hybridizations with the MB and cleavage reactions achieved by the enzyme. In cycle II, hybridization reactions between the HP and a segment of the MB continuously regenerate the target to trigger more cycle I reactions, leading to an enhanced fluorescent signal. The detection limit of the method is determined to be as low as 50 fM within 45 min, which is 2 to 3 orders of magnitude lower than that of the conventional fluorescence strategies. The method also shows a high selectivity over mismatched and random DNA sequences. The signal amplification mechanism of the strategy offers insights into constructing efficient and ultrasensitive biosensors for various applications.
Collapse
Affiliation(s)
- Idorenyin A Iwe
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | |
Collapse
|
6
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
7
|
Connelly RP, Morozkin ES, Gerasimova YV. Alphanumerical Visual Display Made of DNA Logic Gates for Drug Susceptibility Testing of Pathogens. Chembiochem 2018; 19:203-206. [PMID: 29206338 PMCID: PMC5962014 DOI: 10.1002/cbic.201700626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/11/2022]
Abstract
Molecular diagnostics of drug-resistant pathogens require the analysis of point mutations in bacterial or viral genomes, which is usually performed by trained professionals and/or by sophisticated computer algorithms. We have developed a DNA-based logic system that autonomously analyzes mutations found in the genome of Mycobacterium tuberculosis complex (MTC) bacteria and communicates the output to a human user as alphanumeric characters read by the naked eye. The five-gate system displays "O" ("no infection") for the absence of MTC infection and "P" or "F" for passing or failing a drug-susceptibility test, respectively.
Collapse
Affiliation(s)
- Ryan P Connelly
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Orlando, FL, 32816, USA
| | - Evgeny S Morozkin
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Orlando, FL, 32816, USA
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4111 Libra Drive, Orlando, FL, 32816, USA
| |
Collapse
|
8
|
Campbell EA, Peterson E, Kolpashchikov DM. Self-Assembling Molecular Logic Gates Based on DNA Crossover Tiles. Chemphyschem 2017; 18:1730-1734. [PMID: 28234410 DOI: 10.1002/cphc.201700109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 02/02/2023]
Abstract
DNA-based computational hardware has attracted ever-growing attention due to its potential to be useful in the analysis of complex mixtures of biological markers. Here we report the design of self-assembling logic gates that recognize DNA inputs and assemble into crossover tiles when the output signal is high; the crossover structures disassemble to form separate DNA stands when the output is low. The output signal can be conveniently detected by fluorescence using a molecular beacon probe as a reporter. AND, NOT, and OR logic gates were designed. We demonstrate that the gates can connect to each other to produce other logic functions.
Collapse
Affiliation(s)
- Eleanor A Campbell
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Evan Peterson
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, College of Medicine and National Center for Forensic Science, University of Central Florida, Orlando, FL, 32816, USA)An invited contribution to a Special Issue on Molecular Logic
| |
Collapse
|
9
|
Tam DY, Dai Z, Chan MS, Liu LS, Cheung MC, Bolze F, Tin C, Lo PK. A Reversible DNA Logic Gate Platform Operated by One- and Two-Photon Excitations. Angew Chem Int Ed Engl 2015; 55:164-8. [DOI: 10.1002/anie.201507249] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/15/2015] [Indexed: 12/21/2022]
|
10
|
Tam DY, Dai Z, Chan MS, Liu LS, Cheung MC, Bolze F, Tin C, Lo PK. A Reversible DNA Logic Gate Platform Operated by One- and Two-Photon Excitations. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Mailloux S, Gerasimova YV, Guz N, Kolpashchikov DM, Katz E. Bridging the Two Worlds: A Universal Interface between Enzymatic and DNA Computing Systems. Angew Chem Int Ed Engl 2015; 54:6562-6. [PMID: 25864379 PMCID: PMC4495919 DOI: 10.1002/anie.201411148] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/06/2015] [Indexed: 11/09/2022]
Abstract
Molecular computing based on enzymes or nucleic acids has attracted a great deal of attention due to the perspectives of controlling living systems in the way we control electronic computers. Enzyme-based computational systems can respond to a great variety of small molecule inputs. They have the advantage of signal amplification and highly specific recognition. DNA computing systems are most often controlled by oligonucleotide inputs/outputs and are capable of sophisticated computing as well as controlling gene expressions. Here, we developed an interface that enables communication of otherwise incompatible nucleic-acid and enzyme-computational systems. The enzymatic system processes small molecules as inputs and produces NADH as an output. The NADH output triggers electrochemical release of an oligonucleotide, which is accepted by a DNA computational system as an input. This interface is universal because the enzymatic and DNA computing systems are independent of each other in composition and complexity.
Collapse
Affiliation(s)
- Shay Mailloux
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810 (USA)
| | - Yulia V Gerasimova
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366 (USA)
| | - Nataliia Guz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810 (USA)
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2366 (USA).
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810 (USA).
| |
Collapse
|
12
|
Mailloux S, Gerasimova YV, Guz N, Kolpashchikov DM, Katz E. Bridging the Two Worlds: A Universal Interface between Enzymatic and DNA Computing Systems. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
|
14
|
Tan H, Li X, Liao S, Yu R, Wu Z. Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation. Biosens Bioelectron 2014; 62:84-9. [DOI: 10.1016/j.bios.2014.06.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/25/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
15
|
Guo Y, Cheng J, Wang J, Zhou X, Hu J, Pei R. Label-free logic modules and two-layer cascade based on stem-loop probes containing a G-quadruplex domain. Chem Asian J 2014; 9:2397-401. [PMID: 24909844 DOI: 10.1002/asia.201402199] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 11/08/2022]
Abstract
A simple, versatile, and label-free DNA computing strategy was designed by using toehold-mediated strand displacement and stem-loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two-layer logic cascade were constructed. The probes contain a G-quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light-up fluorescent signal of G-quadruplex/NMM complex was used as the output readout. The inputs are the disease-specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label-free and modular strategy might be adapted in multi-target diagnosis through DNA hybridization and aptamer-target interaction.
Collapse
Affiliation(s)
- Yahui Guo
- Suzhou Key Laboratory of Nanotheranostics, Division of Nanobiomedicine, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123 (P.R. China); Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072 (P.R. China)
| | | | | | | | | | | |
Collapse
|