1
|
Xu S, Zhang W, Li C, Li Y, Zeng H, Wang Y, Zhang Y, Niu D. Generation and Use of Glycosyl Radicals under Acidic Conditions: Glycosyl Sulfinates as Precursors. Angew Chem Int Ed Engl 2023; 62:e202218303. [PMID: 36760072 DOI: 10.1002/anie.202218303] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
We herein report a method that enables the generation of glycosyl radicals under highly acidic conditions. Key to the success is the design and use of glycosyl sulfinates as radical precursors, which are bench-stable solids and can be readily prepared from commercial starting materials. This development allows the installation of glycosyl units onto pyridine rings directly by the Minisci reaction. We further demonstrate the utility of this method in the late-stage modification of complex drug molecules, including the anticancer agent camptothecin. Experimental studies provide insight into the reaction mechanism.
Collapse
Affiliation(s)
- Shiyang Xu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Wei Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Caiyi Li
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yanjing Li
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Hongxin Zeng
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yingwei Wang
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yang Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
2
|
Braak FT, Elferink H, Houthuijs KJ, Oomens J, Martens J, Boltje TJ. Characterization of Elusive Reaction Intermediates Using Infrared Ion Spectroscopy: Application to the Experimental Characterization of Glycosyl Cations. Acc Chem Res 2022; 55:1669-1679. [PMID: 35616920 PMCID: PMC9219114 DOI: 10.1021/acs.accounts.2c00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A detailed
understanding of the reaction mechanism(s) leading to
stereoselective product formation is crucial to understanding and
predicting product formation and driving the development of new synthetic
methodology. One way to improve our understanding of reaction mechanisms
is to characterize the reaction intermediates involved in product
formation. Because these intermediates are reactive, they are often
unstable and therefore difficult to characterize using experimental
techniques. For example, glycosylation reactions are critical steps
in the chemical synthesis of oligosaccharides and need to be stereoselective
to provide the desired α- or β-diastereomer. It remains
challenging to predict and control the stereochemical outcome of glycosylation
reactions, and their reaction mechanisms remain a hotly debated topic.
In most cases, glycosylation reactions take place via reaction mechanisms
in the continuum between SN1- and SN2-like pathways.
SN2-like pathways proceeding via the displacement of a
contact ion pair are relatively well understood because the reaction
intermediates involved can be characterized by low-temperature NMR
spectroscopy. In contrast, the SN1-like pathways proceeding
via the solvent-separated ion pair, also known as the glycosyl cation,
are poorly understood. SN1-like pathways are more challenging
to investigate because the glycosyl cation intermediates involved
are highly reactive. The highly reactive nature of glycosyl cations
complicates their characterization because they have a short lifetime
and rapidly equilibrate with the corresponding contact ion pair. To
overcome this hurdle and enable the study of glycosyl cation stability
and structure, they can be generated in a mass spectrometer in the
absence of a solvent and counterion in the gas phase. The ease of
formation, stability, and fragmentation of glycosyl cations have been
studied using mass spectrometry (MS). However, MS alone provides little
information about the structure of glycosyl cations. By combining
mass spectrometry (MS) with infrared ion spectroscopy (IRIS), the
determination of the gas-phase structures of glycosyl cations has
been achieved. IRIS enables the recording of gas-phase infrared spectra
of glycosyl cations, which can be assigned by matching to reference
spectra predicted from quantum chemically calculated vibrational spectra.
Here, we review the experimental setups that enable IRIS of glycosyl
cations and discuss the various glycosyl cations that have been characterized
to date. The structure of glycosyl cations depends on the relative
configuration and structure of the monosaccharide substituents, which
can influence the structure through both steric and electronic effects.
The scope and relevance of gas-phase glycosyl cation structures in
relation to their corresponding condensed-phase structures are also
discussed. We expect that the workflow reviewed here to study glycosyl
cation structure and reactivity can be extended to many other reaction
types involving difficult-to-characterize ionic intermediates.
Collapse
Affiliation(s)
- Floor ter Braak
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hidde Elferink
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Kas J. Houthuijs
- Radboud University, FELIX Laboratory, Institute of Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jos Oomens
- Radboud University, FELIX Laboratory, Institute of Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jonathan Martens
- Radboud University, FELIX Laboratory, Institute of Molecules and Materials, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Thomas J. Boltje
- Radboud University, Institute for Molecules and Materials, Synthetic Organic Chemistry, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
3
|
Panova MV, Medvedev MG, Orlova AV, Kononov LO. Exhaustive Conformational Search for Sialyl Cation Reveals Possibility of Remote Participation of Acyl Groups. Chemphyschem 2021; 23:e202100788. [PMID: 34837303 DOI: 10.1002/cphc.202100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/26/2021] [Indexed: 11/11/2022]
Abstract
Finding convenient ways for the stereoselective α-sialylation is important due to the high practical significance of α-sialic acid-containing glycans and neoglycoconjugates. It was proposed that sialylation stereoselectivity is determined by the structure of the sialyl cation (also known in biochemistry as "sialosyl cation"), a supposed intermediate in this reaction. Here we design a new approach for studying the conformational space of highly flexible sialyl cation and find 1625 unique conformers including those stabilized by covalent remote participation (also known as long-range participation) of 4-O-acetyl (4-OAc), 5-N-trifluoroacetyl (5-NTFA), as well as 7,8,9-OAc from both α and β sides. The most energetically stable sialyl cation conformers are featured by 4-OAc participation, closely followed by 5-NTFA- and 7-OAc-stabilized conformers; unstabilized sialyl cation conformers are ∼10 kcal mol-1 less stable than the 4-OAc-stabilized ones. Analysis of all the obtained conformers by means of substituents positions, side chain conformations and ring puckering led us to a new "eight-conformer hypothesis" which describes interconversions among the most important sialyl cation conformers and predicts that stronger remote participation of acyl groups favors β-anomers. Thus, selective synthesis of the desired α-sialosides requires minimization of acyl groups participation.
Collapse
Affiliation(s)
- Maria V Panova
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Michael G Medvedev
- Group of Theoretical Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Anna V Orlova
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- Laboratory of Glycochemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russian Federation
| |
Collapse
|
4
|
Asressu KH, Chang C, Lam S, Wang C. Donor‐Reactivity‐Controlled Sialylation Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kesatebrhan Haile Asressu
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST) Academia Sinica Taipei 115 Taiwan
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Chun‐Wei Chang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Sarah Lam
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
| | - Cheng‐Chung Wang
- Institute of Chemistry Academia Sinica Taipei 115 Taiwan
- Taiwan International Graduate Program (TIGP) Sustainable Chemical Science and Technology (SCST) Academia Sinica Taipei 115 Taiwan
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| |
Collapse
|
5
|
Shang W, Su SN, Shi R, Mou ZD, Yu GQ, Zhang X, Niu D. Generation of Glycosyl Radicals from Glycosyl Sulfoxides and Its Use in the Synthesis of C-linked Glycoconjugates. Angew Chem Int Ed Engl 2020; 60:385-390. [PMID: 32935426 DOI: 10.1002/anie.202009828] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Indexed: 02/05/2023]
Abstract
We here report glycosyl sulfoxides appended with an aryl iodide moiety as readily available, air and moisture stable precursors to glycosyl radicals. These glycosyl sulfoxides could be converted to glycosyl radicals by way of a rapid and efficient intramolecular radical substitution event. The use of this type of precursors enabled the synthesis of various complex C-linked glycoconjugates under mild conditions. This reaction could be performed in aqueous media and is amenable to the synthesis of glycopeptidomimetics and carbohydrate-DNA conjugates.
Collapse
Affiliation(s)
- Weidong Shang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Sheng-Nan Su
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Rong Shi
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Ze-Dong Mou
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Guo-Qiang Yu
- Discovery Chemistry Unit, HitGen Inc., Building 6, No. Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
6
|
Shang W, Su S, Shi R, Mou Z, Yu G, Zhang X, Niu D. Generation of Glycosyl Radicals from Glycosyl Sulfoxides and Its Use in the Synthesis of
C
‐linked Glycoconjugates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Weidong Shang
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Sheng‐Nan Su
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Rong Shi
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Ze‐Dong Mou
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Guo‐Qiang Yu
- Discovery Chemistry Unit HitGen Inc. Building 6, No. Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District Chengdu 610200 China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
7
|
Cristòfol À, Böhmer C, Kleij AW. Formal Synthesis of Indolizidine and Quinolizidine Alkaloids from Vinyl Cyclic Carbonates. Chemistry 2019; 25:15055-15058. [PMID: 31574183 DOI: 10.1002/chem.201904223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Cyclic carbonates have long been considered relatively inert molecules acting as protecting groups in complex multistep synthetic routes. This study shows that a concise, yet modular synthesis of indolizidine and quinolizidine alkaloids can be developed from vinyl-substituted cyclic carbonate (VCC) intermediates. Through a highly stereoselective palladium-catalyzed allylic alkylation reaction, these alkaloid motifs can be assembled in four synthetic and only two column purification steps. The combined results help to further advance functionalized cyclic carbonates as useful and reactive intermediates in natural product synthesis.
Collapse
Affiliation(s)
- Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Christian Böhmer
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
8
|
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
9
|
Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2019; 59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Radical-radical couplings are mostly nearly diffusion-controlled processes. Therefore, the selective cross-coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross-coupling will become the dominant process. This high cross-selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE-mediated radical-radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer-lived than the other transient radical, the PRE operates and high cross-selectivity is achieved. This important point expands the scope of PRE-mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer-lived organic radicals and 2) "radical-metal crossover reactions"; here, metal-centered radical species and more generally longer-lived transition-metal complexes that are able to react with radicals are discussed-a field that has flourished recently.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
10
|
Amatov T, Jangra H, Pohl R, Cisařová I, Zipse H, Jahn U. Unique Stereoselective Homolytic C-O Bond Activation in Diketopiperazine-Derived Alkoxyamines by Adjacent Amide Pyramidalization. Chemistry 2018; 24:15336-15345. [PMID: 30092124 DOI: 10.1002/chem.201803284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Simple monocyclic diketopiperazine (DKP)-derived alkoxyamines exhibit unprecedented activation of a remote C-O bond for homolysis by amide distortion. The combination of strain-release-driven amide planarization and the persistent radical effect (PRE) enables a unique, irreversible, and quantitative trans→cis isomerization under much milder conditions than typically observed for such homolysis-limited reactions. This isomerization is shown to be general and independent of the steric and electronic nature of both the amino acid side chains and the substituents at the DKP nitrogen atoms. Homolysis rate constants are determined, and they significantly differ for both the labile trans diastereomers and the stable cis diastereomers. To reveal the factors influencing this unusual process, structural features of the kinetic trans diastereomers and thermodynamic cis diastereomers are investigated in the solid state and in solution. X-ray crystallographic analysis and computational studies indicate substantial distortion of the amide bond from planarity in the trans-alkoxyamines, and this is believed to be the cause for the facile and quantitative isomerization. Thus, these amino-acid-derived alkoxyamines are the first examples that exhibit a large thermodynamic preference for one diastereomer over the other upon thermal homolysis, and this allows controlled switching of configurations and configurational cycling.
Collapse
Affiliation(s)
- Tynchtyk Amatov
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610, Prague, Czech Republic.,Ludwig Maximilian University, Department of Chemistry, Butenandstrasse 5-13, 81377, München, Germany
| | - Harish Jangra
- Ludwig Maximilian University, Department of Chemistry, Butenandstrasse 5-13, 81377, München, Germany
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Ivana Cisařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843, Prague, Czech Republic
| | - Hendrik Zipse
- Ludwig Maximilian University, Department of Chemistry, Butenandstrasse 5-13, 81377, München, Germany
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| |
Collapse
|
11
|
Peña-López M, Neumann H, Beller M. Iron-Catalyzed Synthesis of Five-Membered Cyclic Carbonates from Vicinal Diols: Urea as Sustainable Carbonylation Agent. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600476] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Miguel Peña-López
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
12
|
Daum M, Broszeit F, Hoffmann-Röder A. Synthesis of a Fluorinated Sialophorin Hexasaccharide-Threonine Conjugate for Fmoc Solid-Phase Glycopeptide Synthesis. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Markus Daum
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Frederik Broszeit
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| | - Anja Hoffmann-Röder
- Center for Integrated Protein Science Munich (CIPS ) at the Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
13
|
Yin Z, Dulaney S, McKay CS, Baniel C, Kaczanowska K, Ramadan S, Finn MG, Huang X. Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage Qβ, and the Induction of Anticancer Antibodies. Chembiochem 2016; 17:174-80. [PMID: 26538065 PMCID: PMC4726457 DOI: 10.1002/cbic.201500499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 01/10/2023]
Abstract
The development of carbohydrate-based antitumor vaccines is an attractive approach towards tumor prevention and treatment. Herein, we focused on the ganglioside GM2 tumor-associated carbohydrate antigen (TACA), which is overexpressed in a wide range of tumor cells. GM2 was synthesized chemically and conjugated with a virus-like particle derived from bacteriophage Qβ. Although the copper-catalyzed azide-alkyne cycloaddition reaction efficiently introduced 237 copies of GM2 per Qβ, this construct failed to induce significant amounts of anti-GM2 antibodies compared to the Qβ control. In contrast, GM2 immobilized on Qβ through a thiourea linker elicited high titers of IgG antibodies that recognized GM2-positive tumor cells and effectively induced cell lysis through complement-mediated cytotoxicity. Thus, bacteriophage Qβ is a suitable platform to boost antibody responses towards GM2, a representative member of an important class of TACA: the ganglioside.
Collapse
Affiliation(s)
- Zhaojun Yin
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, Room 426, East Lansing, MI, 48824-1322, USA
| | - Steven Dulaney
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, Room 426, East Lansing, MI, 48824-1322, USA
| | - Craig S McKay
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA
| | - Claire Baniel
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, Room 426, East Lansing, MI, 48824-1322, USA
| | - Katarzyna Kaczanowska
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, Room 426, East Lansing, MI, 48824-1322, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya, Egypt
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, Room 426, East Lansing, MI, 48824-1322, USA.
| |
Collapse
|
14
|
Mandhapati AR, Rajender S, Shaw J, Crich D. The isothiocyanato moiety: an ideal protecting group for the stereoselective synthesis of sialic acid glycosides and subsequent diversification. Angew Chem Int Ed Engl 2015; 54:1275-8. [PMID: 25446629 PMCID: PMC4300277 DOI: 10.1002/anie.201409797] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 01/14/2023]
Abstract
The preparation of a crystalline, peracetyl adamantanyl thiosialoside donor protected by an isothiocyanate group is described. On activation at -78 °C in the presence of typical carbohydrate acceptors, this donor gives high yields of the corresponding sialosides with exquisite α-selectivity. The high selectivity extends to the 4-O-benzyl-protected 3-OH acceptors, which are typically less reactive and selective than galactose 3,4-diols. Treatment of the α-sialosides with tris(trimethylsilyl)silane or allyltris(trimethylsilyl)silane results in replacement of the C5-N5 bond by a C-H or a C-C bond. The reaction of the isothiocyanate-protected sialosides with thioacids generates amides, while reaction with an amine gives a thiourea, which can be converted into a guanidine. The very high α-selectivities observed with the new donor and the rich chemistry of the isothiocyante function considerably extend the scope for optimization at the sialoside 5-position.
Collapse
Affiliation(s)
- Appi Reddy Mandhapati
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Fax: (+) 313 577 8822, Homepage: chem.wayne.edu/crichgroup
| | - Salla Rajender
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Fax: (+) 313 577 8822, Homepage: chem.wayne.edu/crichgroup
| | - Jonathan Shaw
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Fax: (+) 313 577 8822, Homepage: chem.wayne.edu/crichgroup
| | - David Crich
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA, Fax: (+) 313 577 8822, Homepage: chem.wayne.edu/crichgroup
| |
Collapse
|
15
|
Mandhapati AR, Rajender S, Shaw J, Crich D. The Isothiocyanato Moiety: An Ideal Protecting Group for the Stereoselective Synthesis of Sialic Acid Glycosides and Subsequent Diversification. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Boltje TJ, Heise T, Rutjes FPJT, van Delft FL. A Divergent Method to Prepare 5-Amino-, 5-N-Acetamido-, and 5-N-Glycolylsialosides. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|