1
|
Peng J, Zhao Y, Yang J, Liu Y. Crystal Engineering-Driven Sunlight Responsiveness and Flexible Waveguide Transmission. J Phys Chem Lett 2024; 15:7335-7341. [PMID: 38986014 DOI: 10.1021/acs.jpclett.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Here, a barbituric acid derivative containing pyrene rings (DPPT) was successfully synthesized, and two types of crystals were prepared by using crystal engineering methods. Orange sheet-like crystals (DPPT-O, observed in visible light), prepared in a DCM/CH3OH solution, exhibited brittleness and weak fluorescence emission, along with sunlight-induced bending and fracturing. Red needle-like crystals (DPPT-R, also observed in visible light), synthesized in a DCM/CH3CN solution, demonstrated elastic properties, strong fluorescence emission, and excellent optical waveguide performance (with an optical loss coefficient of 0.23-0.30 dB mm-1). Single-crystal data analysis revealed that the stacking arrangement of molecules critically influenced the elasticity of the crystals, while the reaction cavity size regulated the photomechanical properties of the crystals. This study achieved effective control over sunlight responsiveness and flexible optical waveguide transmission for the first time, providing innovative insights for the application of homogeneous organic polycrystalline molecular crystals in this field.
Collapse
Affiliation(s)
- Jiang Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan 030032, China
| | - Yuheng Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan 030032, China
| | - Jing Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan 030032, China
| | - Yuanyuan Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials Science, Shanxi Normal University, TaiYuan 030032, China
| |
Collapse
|
2
|
Peng J, Han C, Zhang X, Jia J, Bai J, Zhang Q, Wang Y, Xue P. Mechanical Effects of Elastic Crystals Driven by Natural Sunlight and Force. Angew Chem Int Ed Engl 2023; 62:e202311348. [PMID: 37828622 DOI: 10.1002/anie.202311348] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Flexible crystals that can capture solar energy and convert it into mechanical energy are promising for a wide range of applications such as information storage and actuators, but obtaining them remains a challenge. Herein, an elastic crystal of a barbiturate derivative was found to be an excellent candidate, demonstrating plastic bending behavior under natural sunlight irradiation. 1 H NMR and high-resolution mass spectrum data of microcrystals before and after light irradiation demonstrated that light-induced [2+2] cycloaddition was the driving force for the photomechanical effects. Interestingly, the crystals retained elastic bending even after light irradiation. This is the first report of flexible crystals that can be driven by natural sunlight and that have both photomechanical properties and elasticity. Furthermore, regulation of the passive light output direction of the crystals and transport of objects by applying mechanical forces and light was demonstrated.
Collapse
Affiliation(s)
- Jiang Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Chuchu Han
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Xin Zhang
- Aerospace science & industry defense technology research and test center, 100039, Beijing, China
| | - Junhui Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Jiakun Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Qi Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Yan Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of, Ministry of Education & School of Chemistry and Materials Science of, Shanxi Normal University, 030032, Taiyuan, China
| | - Pengchong Xue
- Tianjin key laboratory of structure and performance for functional molecules, College of Chemistry, Tianjin Normal University, 300387, Tianjin, China
| |
Collapse
|
3
|
Saha BK, Nath NK, Thakuria R. Polymorphs with Remarkably Distinct Physical and/or Chemical Properties. CHEM REC 2023; 23:e202200173. [PMID: 36166697 DOI: 10.1002/tcr.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Polymorphism in crystals is known since 1822 and the credit goes to Mitscherlich who realized the existence of different crystal structures of the same compound while working with some arsenate and phosphate salts. Later on, this phenomenon was observed also in organic crystals. With the advent of different technologies, especially the easy availability of single crystal XRD instruments, polymorphism in crystals has become a common phenomenon. Almost 37 % of compounds (single component) are polymorphic to date. As the energies of the different polymorphic forms are very close to each other, small changes in crystallization conditions might lead to different polymorphic structures. As a result, sometimes it is difficult to control polymorphism. For this reason, it is considered to be a nuisance to crystal engineering. It has been realized that the property of a material depends not only on the molecular structure but also on its crystal structure. Therefore, it is not only of interest to academia but also has widespread applications in the materials science as well as pharmaceutical industries. In this review, we have discussed polymorphism which causes significant changes in materials properties in different fields of solid-state science, such as electrical, magnetic, SHG, thermal expansion, mechanical, luminescence, color, and pharmaceutical. Therefore, this review will interest researchers from supramolecular chemistry, materials science as well as medicinal chemistry.
Collapse
Affiliation(s)
- Binoy K Saha
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Naba K Nath
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, Meghalaya 793003, India
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati, 781014, India
| |
Collapse
|
4
|
Ibrahim SF, Pickering J, Ramachandran V, Roberts KJ. Prediction of the Mechanical Deformation Properties of Organic Crystals Based upon their Crystallographic Structures: Case Studies of Pentaerythritol and Pentaerythritol Tetranitrate. Pharm Res 2022; 39:3063-3078. [PMID: 35778633 DOI: 10.1007/s11095-022-03314-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Development of a quantitative model and associated workflow for predicting the mechanical deformation properties (plastic deformation or cleavage fracture) of organic single crystals from their crystallographic structures using molecular and crystallographic modelling. METHODS Intermolecular synthons, hydrogen bonding, crystal morphology and surface chemistry are modelled using empirical force fields with the data integrated into the analysis of lattice deformation as computed using a statistical approach. RESULTS The approach developed comprises three main components. Firstly, the identification of the likely direction of deformation based on lattice unit cell geometry; secondly, the identification of likely lattice planes for deformation through the calculation of the strength and stereochemistry of interplanar intermolecular interactions, surface plane rugosity and surface energy; thirdly, identification of potential crystal planes for cleavage fracture by assessing intermolecular bonding anisotropy. Pentaerythritol is predicted to fracture by brittle cleavage on the {001} lattice planes by strong in-plane hydrogen-bond interactions in the <110>, whereas pentaerythritol tetranitrate is predicted to deform by plastic deformation through the slip system {110} < 001>, with both predictions being in excellent agreement with known experimental data. CONCLUSION A crystallographic framework and associated workflow for predicting the mechanical deformation of molecular crystals is developed through quantitative assessment of lattice energetics, crystal surface chemistry and crystal defects. The potential for the de novo prediction of the mechanical deformation of pharmaceutical materials using this approach is highlighted for its potential importance in the design of formulated drug products process as needed for manufacture by direct compression.
Collapse
Affiliation(s)
- S Fatimah Ibrahim
- Malaysian Institute of Chemical & Bioengineering Technology (MICET), Universiti Kuala Lumpur, 1988, 7800, Vendor City, Taboh Naning, Malaysia. .,Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Jonathan Pickering
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,School of Computing, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK
| | - Vasuki Ramachandran
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Kevin J Roberts
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
5
|
Chauhan V, Mardia R, Patel M, Suhagia B, Parmar K. Technical and Formulation Aspects of Pharmaceutical Co‐Crystallization: A Systematic Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vishva Chauhan
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Rajnikant Mardia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Mehul Patel
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Bhanu Suhagia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Komal Parmar
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
| |
Collapse
|
6
|
Tang S, Ye K, Zhang H. Integrating Low‐Temperature‐Resistant Two‐Dimensional Elastic‐Bending and Reconfigurable Plastic‐Twisting Deformations into an Organic Crystal. Angew Chem Int Ed Engl 2022; 61:e202210128. [DOI: 10.1002/anie.202210128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shiyue Tang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun 130012 P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
7
|
Yano Y, Kasai H, Zheng Y, Nishibori E, Hisaeda Y, Ono T. Multicomponent Crystals with Competing Intermolecular Interactions: In Situ X‐ray Diffraction and Luminescent Features Reveal Multimolecular Assembly under Mechanochemical Conditions. Angew Chem Int Ed Engl 2022; 61:e202203853. [DOI: 10.1002/anie.202203853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yoshio Yano
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hidetaka Kasai
- Department of Physics Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Yanyan Zheng
- Department of Physics Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Eiji Nishibori
- Department of Physics Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Toshikazu Ono
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
8
|
Tang S, Ye K, Zhang H. Integrating Low‐Temperature‐Resistant Two‐Dimensional Elastic‐Bending and Reconfigurable Plastic‐Twisting Deformations into an Organic Crystal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Kaiqi Ye
- Jilin University College of Chemistry CHINA
| | - Hongyu Zhang
- Jilin University Chemistry Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
9
|
Chinnasamy R, Ravi J, Vinay Pradeep V, Manoharan D, Emmerling F, Bhattacharya B, Ghosh S, Chandrasekar R. Adaptable Optical Microwaveguides From Mechanically Flexible Crystalline Materials. Chemistry 2022; 28:e202200905. [DOI: 10.1002/chem.202200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jada Ravi
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| | - Vuppu Vinay Pradeep
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| | - Deepak Manoharan
- Department of Chemistry SRM Institute of Science and Technology Chennai 603 203 India
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and Testing Richard-Willstätter-Str. 11 12489 Berlin Germany
| | - Soumyajit Ghosh
- Department of Chemistry SRM Institute of Science and Technology Chennai 603 203 India
| | - Rajadurai Chandrasekar
- Advanced Organic Photonic Materials and Technology Laboratory School of Chemistry and Centre for Nanotechnology University of Hyderabad Gachibowli Hyderabad 500046 India
| |
Collapse
|
10
|
Pan X, Zheng A, Yu X, Di Q, Li L, Duan P, Ye K, Naumov P, Zhang H. A Low-Temperature-Resistant Flexible Organic Crystal with Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202203938. [PMID: 35441771 DOI: 10.1002/anie.202203938] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/12/2022]
Abstract
Flexible organic crystals with unique mechanical properties and excellent optical properties are of paramount significance for their wide applications in various research fields such as adaptive optics and soft robotics. However, low-temperature-resistant flexible organic crystal with circularly polarized luminescence (CPL) has never been reported. Herein, chiral organic crystals with CPL activity and low-temperature flexibility (77 K) are fabricated by the solvent diffusion method from chiral Schiff base, S(R)-4-bromo-2-(((1-phenylethyl)imino)methyl)phenol (S(R)-BPEMP). The corresponding chirooptical properties for the two enantiomeric crystals were thoroughly investigated, including the measurements of circular dichroism (CD) and CPL. To the best of our knowledge, this is the first report on low-molecular-weight flexible organic crystals with CPL activity, and we believe that the results will give a new impetus to the research of organic crystals.
Collapse
Affiliation(s)
- Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Anyi Zheng
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xu Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Qi Di
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates.,Department of Sciences and Engineering, Sorbonne University Abu Dhabi, 38044, Abu Dhabi, United Arab Emirates
| | - Pengfei Duan
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, 129188, Abu Dhabi, United Arab Emirates.,Molecular Design Institute, Department of Chemistry, New York University, 10003, New York, USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| |
Collapse
|
11
|
Yano Y, Kasai H, Zheng Y, Nishibori E, Hisaeda Y, Ono T. Multicomponent Crystals with Competing Intermolecular Interactions: In Situ X‐ray Diffraction and Luminescent Features Reveal Multimolecular Assembly of Mechanochemical Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshio Yano
- Kyushu University: Kyushu Daigaku Department of Chemistry and Biochemistry, Graduate School of Engineering JAPAN
| | - Hidetaka Kasai
- University of Tsukuba: Tsukuba Daigaku Department of Physics, Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) JAPAN
| | - Yanyan Zheng
- University of Tsukuba: Tsukuba Daigaku Department of Physics, Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) JAPAN
| | - Eiji Nishibori
- University of Tsukuba: Tsukuba Daigaku Department of Physics, Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Science (TREMS) JAPAN
| | - Yoshio Hisaeda
- Kyushu University: Kyushu Daigaku Department of Chemistry and Biochemistry, Graduate School of Engineering JAPAN
| | - Toshikazu Ono
- Kyushu University Department of Chemistry and Biochemistry, Graduate School of Engineering 744 Motooka, Nishi 819-0395 Fukuoka JAPAN
| |
Collapse
|
12
|
Pan X, Zheng A, Yu X, Di Q, Li L, Duan P, Ye K, Naumov P, Zhang H. A Low‐Temperature‐Resistant Flexible Organic Crystal with Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiuhong Pan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| | - Anyi Zheng
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Chinese Academy of Sciences 100190 Beijing China
| | - Xu Yu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| | - Qi Di
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| | - Liang Li
- Smart Materials Lab New York University Abu Dhabi 129188 Abu Dhabi United Arab Emirates
- Department of Sciences and Engineering Sorbonne University Abu Dhabi 38044 Abu Dhabi United Arab Emirates
| | - Pengfei Duan
- Center for Excellence in Nanoscience Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology Chinese Academy of Sciences 100190 Beijing China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| | - Panče Naumov
- Smart Materials Lab New York University Abu Dhabi 129188 Abu Dhabi United Arab Emirates
- Molecular Design Institute Department of Chemistry New York University 10003 New York USA
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 130012 Changchun China
| |
Collapse
|
13
|
Yu X, Liu B, Pan X, Zhang H. Deep‐red Emission Flexible Optical Waveguide via an Organic Crystal with High Elastic Performance. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xu Yu
- Jilin University College of Chemistry Qianjin Street Changchun CHINA
| | - Bin Liu
- Jilin University College of Chemistry Qianjin Street Changchun CHINA
| | - Xiuhong Pan
- Jilin University College of Chemistry Qianjin Street Changchun CHINA
| | - Hongyu Zhang
- Jilin University Chemistry Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
14
|
Li Z, Tran DK, Nguyen M, Jian T, Yan F, Jenekhe SA, Chen CL. Amphiphilic Peptoid-Directed Assembly of Oligoanilines into Highly Crystalline Conducting Nanotubes. Macromol Rapid Commun 2022; 43:e2100639. [PMID: 35038198 DOI: 10.1002/marc.202100639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Indexed: 12/13/2022]
Abstract
It is reported herein the synthesis of a novel amphiphilic diblock peptoid bearing a terminal conjugated oligoaniline and its self-assembly into small-diameter (D ≈ 35 nm) crystalline nanotubes with high aspect ratios (>30). It is shown that both tetraaniline (TANI)-peptoid and bianiline (BANI)-peptoid triblock molecules self-assemble in solution to form rugged highly crystalline nanotubes that are very stable to protonic acid doping and de-doping processes. The similarity of the crystalline tubular structure of the nanotube assemblies revealed by electron microscopy imaging, and X-ray diffraction analysis of the nanotube assemblies of TANI-functionalized peptoids and nonfunctionalized peptoids showed that the peptoid is an efficient ordered structure directing motif for conjugated oligomers. Films of doped TANI-peptoid nanotubes has a dc conductivity of ca. 95 mS cm-1 , while the thin films of doped un-assembled TANI-peptoids show a factor of 5.6 lower conductivity, demonstrating impact of the favorable crystalline ordering of the assemblies on electrical transport. These results demonstrate that peptoid-directed supramolecular assembly of tethered π-conjugated oligo(aniline) exemplify a novel general strategy for creating rugged ordered and complex nanostructures that have useful electronic and optoelectronic properties.
Collapse
Affiliation(s)
- Zhiliang Li
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Duyen K Tran
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750, USA
| | - Mary Nguyen
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750, USA
| | - Tengyue Jian
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Feng Yan
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,School of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong Province, 276005, China
| | - Samson A Jenekhe
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750, USA
| | - Chun-Long Chen
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750, USA
| |
Collapse
|
15
|
Das S, Saha S, Sahu M, Mondal A, Reddy CM. Temperature‐Reliant Dynamic Properties and Elasto‐Plastic to Plastic Crystal (Rotator) Phase Transition in a Metal Oxyacid Salt. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susobhan Das
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - Subhankar Saha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
- Department of Chemistry Islampur College Islampur Uttar Dinajpur, West Bengal 733202 India
| | - Mrinmay Sahu
- Department of Physical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - Amit Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246, Nadia, West Bengal India
| |
Collapse
|
16
|
Das S, Saha S, Sahu M, Mondal A, Reddy CM. Temperature-Reliant Dynamic Properties and Elasto-Plastic to Plastic Crystal (Rotator) Phase Transition in a Metal Oxyacid Salt. Angew Chem Int Ed Engl 2021; 61:e202115359. [PMID: 34890475 DOI: 10.1002/anie.202115359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 01/27/2023]
Abstract
Although, dynamic crystals are attractive for use in many technologies, molecular level mechanisms of various solid-state dynamic processes and their interdependence, remain poorly understood. Here, we report a rare example of a dynamic crystal (1), involving a heavy transition metal, rhenium, with an initial two-face elasticity (within ≈1 % strain), followed by elasto-plastic deformation, at room temperature. Further, these crystals transform to a rotator (plastic) crystal phase at ≈105 °C, displaying exceptional malleability. Qualitative and quantitative mechanical tests, X-ray diffraction, μ-Raman and polarized light microscopy experiments reveal that the elasto-plastic deformation involves both partial molecular rotations and slip, while malleability in the rotator phase is facilitated by reorientational motions and increased symmetry (slip planes). Our work, connecting the plastically bendable (1D or 2D) crystals with the rotator phases (3D), is important for designing multi-functional dynamic crystals.
Collapse
Affiliation(s)
- Susobhan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Subhankar Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Department of Chemistry, Islampur College, Islampur, Uttar Dinajpur, West Bengal 733202, India
| | - Mrinmay Sahu
- Department of Physical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Amit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| |
Collapse
|
17
|
Peng J, Bai J, Cao X, He J, Xu W, Jia J. Elastic Organic Crystals Based on Barbituric Derivative: Multi-faceted Bending and Flexible Optical Waveguide. Chemistry 2021; 27:16036-16042. [PMID: 34559422 DOI: 10.1002/chem.202103286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Elastic organic single crystals with light-emitting and multi-faceted bending properties are extremely rare. They have potential application in optical materials and have attracted the extensive attention of researchers. In this paper, we reported a structurally simple barbituric derivative DBDT, which was easily crystallized and gained long needle-like crystals (centimeter-scale) in DCM/CH3 OH (v/v=2/8). Upon applying or removing the mechanical force, both the (100) and (040) faces of the needle-like crystal showed reversible bending behaviour, showing the nature of multi-faceted bending. The average hardness (H) and elastic modulus (E) were 0.28±0.01 GPa and 4.56±0.03 GPa for the (040) plane, respectively. Through the analysis of the single crystal data, it could be seen that the van der waals (C-H⋅⋅⋅π and C-H⋅⋅⋅C), H-bond (C-H⋅⋅⋅O) and π⋅⋅⋅π interactions between molecules were responsible for the generation of the crystal elasticity. Interestingly, elastic crystals exhibited optical waveguide characteristics in straight or bent state. The optical loss coefficients measured at 627 nm were 0.7 dBmm-1 (straight state) and 0.9 dBmm-1 (bent state), while the optical loss coefficient (α) were 1.5 dBmm-1 (straight state) and 1.8 dBmm-1 (bent state) at 567 nm. Notably, the elastic organic molecular crystal based on barbituric derivative could be used as the candidate for flexible optical devices.
Collapse
Affiliation(s)
- Jiang Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China
| | - Jiakun Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China
| | - Xiumian Cao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Physics, Jilin University, Changchun, China
| | - Jieting He
- Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Junhui Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Material, Ministry of Education, College of Chemistry and Material science, Shanxi Normal University, Linfen, China
| |
Collapse
|
18
|
Chen Y, Chang Z, Zhang J, Gong J. Bending for Better: Flexible Organic Single Crystals with Controllable Curvature and Curvature-Related Conductivity for Customized Electronic Devices. Angew Chem Int Ed Engl 2021; 60:22424-22431. [PMID: 34375037 DOI: 10.1002/anie.202108441] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/28/2021] [Indexed: 11/07/2022]
Abstract
Electronic microdevices of self-bending coronene crystals are developed to reveal an unexplored link between mechanical deformation and crystal function. First, a facile approach towards length/width/curvature-controllable micro-crystals through bottom-up solution crystallization was proposed for high processability and stability. The bending crystal devices show a significant increase beyond seven orders of magnitude in conductivity than the straight ones, providing the first example of deformation-induced function enhancement in crystal materials. Besides, double effects caused by bending, including the change of π electron level as well as the enhancement of carrier mobility, were determined, respectively by the X-ray photoelectric spectroscopy and X-ray crystallography to coexist, contributing to the conductivity improvement. Our findings will promote future creation of flexible organic crystal systems with deformation-enhanced functional features towards customized smart devices.
Collapse
Affiliation(s)
- Yifu Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
| | - Zewei Chang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
19
|
Chen Y, Chang Z, Zhang J, Gong J. Bending for Better: Flexible Organic Single Crystals with Controllable Curvature and Curvature‐Related Conductivity for Customized Electronic Devices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yifu Chen
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Weijin Road 92 Tianjin 300072 China
| | - Zewei Chang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Weijin Road 92 Tianjin 300072 China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Weijin Road 92 Tianjin 300072 China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Weijin Road 92 Tianjin 300072 China
| |
Collapse
|
20
|
Jain H, Sutradhar D, Roy S, Desiraju GR. Synthetic Approaches to Halogen Bonded Ternary Cocrystals. Angew Chem Int Ed Engl 2021; 60:12841-12846. [PMID: 33779114 DOI: 10.1002/anie.202103516] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/09/2022]
Abstract
Higher cocrystal synthesis depends acutely on a knowledge of supramolecular synthons. We report three synthetic approaches towards ternary halogen bonded cocrystals that illustrate specificity and generality. Electrophilicity/nucleophilicity differences are needed among alternative sites of halogen bond formation. The two halogen bonds A⋅⋅⋅B and B⋅⋅⋅C in a halogen bonded ternary cocrystal ABC need to be of different strength. Interaction mimicry of hydrogen bonds by halogen bonds is a viable approach towards ternaries as illustrated with the pyrene structure. Finally, the crystal engineer should well be able to anticipate halogen bonds that are stronger than hydrogen bonds.
Collapse
Affiliation(s)
- Harsh Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Dipankar Sutradhar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Sourav Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Gautam R Desiraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
21
|
Jain H, Sutradhar D, Roy S, Desiraju GR. Synthetic Approaches to Halogen Bonded Ternary Cocrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Harsh Jain
- Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560 012 India
| | - Dipankar Sutradhar
- Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560 012 India
| | - Sourav Roy
- Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560 012 India
| | - Gautam R. Desiraju
- Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore 560 012 India
| |
Collapse
|
22
|
Prakash P, Ardhra S, Fall B, Zdilla MJ, Wunder SL, Venkatnathan A. Solvate sponge crystals of (DMF) 3NaClO 4: reversible pressure/temperature controlled juicing in a melt/press-castable sodium-ion conductor. Chem Sci 2021; 12:5574-5581. [PMID: 34168793 PMCID: PMC8179650 DOI: 10.1039/d0sc06455f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/28/2021] [Indexed: 12/23/2022] Open
Abstract
A new type of crystalline solid, termed "solvate sponge crystal", is presented, and the chemical basis of its properties are explained for a melt- and press-castable solid sodium ion conductor. X-ray crystallography and atomistic simulations reveal details of atomic interactions and clustering in (DMF)3NaClO4 and (DMF)2NaClO4 (DMF = N-N'-dimethylformamide). External pressure or heating results in reversible expulsion of liquid DMF from (DMF)3NaClO4 to generate (DMF)2NaClO4. The process reverses upon the release of pressure or cooling. Simulations reveal the mechanism of crystal "juicing," as well as melting. In particular, cation-solvent clusters form a chain of octahedrally coordinated Na+-DMF networks, which have perchlorate ions present in a separate sublattice space in 3 : 1 stoichiometry. Upon heating and/or pressing, the Na+⋯DMF chains break and the replacement of a DMF molecule with a ClO4 - anion per Na+ ion leads to the conversion of the 3 : 1 stoichiometry to a 2 : 1 stoichiometry. The simulations reveal the anisotropic nature of pressure induced stoichiometric conversion. The results provide molecular level understanding of a solvate sponge crystal with novel and desirable physical castability properties for device fabrication.
Collapse
Affiliation(s)
- Prabhat Prakash
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 India
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat 382355 India
| | - Shylendran Ardhra
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 India
| | - Birane Fall
- Department of Chemistry, Temple University 1901-N 13th St. Philadelphia PA 19086 USA
| | - Michael J Zdilla
- Department of Chemistry, Temple University 1901-N 13th St. Philadelphia PA 19086 USA
| | - Stephanie L Wunder
- Department of Chemistry, Temple University 1901-N 13th St. Philadelphia PA 19086 USA
| | - Arun Venkatnathan
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 India
| |
Collapse
|
23
|
Seki T, Hoshino N, Suzuki Y, Hayashi S. Functional flexible molecular crystals: intrinsic and mechanoresponsive properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00388g] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flexible molecular crystals have attracted much attention to unique optoelectronic applications and stimuli-responsive chemistry, resulting in various functional molecular crystals for controlling photons, phonons, electrons, and magnons.
Collapse
Affiliation(s)
- Tomohiro Seki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Yamaguchi, 753-8512, Japan
| | - Shotaro Hayashi
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Japan
| |
Collapse
|
24
|
Wong SN, Chen YCS, Xuan B, Sun CC, Chow SF. Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00825k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight presents an overview of pharmaceutical cocrystal production and its potential in reviving problematic properties of drugs in different dosage forms. The challenges and future outlook of its translational development are discussed.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Yu Chee Sonia Chen
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Department of Pharmacy, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| |
Collapse
|
25
|
Ghora M, Majumdar P, Anas M, Varghese S. Enabling Control over Mechanical Conformity and Luminescence in Molecular Crystals: Interaction Engineering in Action. Chemistry 2020; 26:14488-14495. [PMID: 32761653 DOI: 10.1002/chem.202003311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/11/2022]
Abstract
Molecular crystals of π-conjugated molecules are of great interest as the highly ordered dense packing offers superior charge and exciton transport compared with its amorphous counterparts. However, integration into optoelectronic devices remains a major challenge owing to its inherently brittle nature. Herein, control over the mechanical conformity in single crystals of pyridine-appended thiazolothiazole derivatives is reported by modulating the molecular packing through interaction engineering. Two polymorphs were prepared by achieving control over the thermodynamic/kinetic factors of crystallization; one of the polymorphs exhibits elastic bending whereas the other is brittle. The control over the bending ability was achieved by forming co-crystals with hydrogen/halogen bond donors. A seamless extended crisscross pattern with respect to the bend plane through a ditopic hydrogen-bonding motif showed the highest compliance towards mechanical bending, whereas the co-crystals with a layered crisscross arrangement with segregated layers of co-formers exhibit slightly lower bending conformity. These results update the rationale behind the plastic/elastic bending in molecular crystals. The co-crystals of ditopic halogen bond co-assemblies are particularly appealing for waveguiding applications as the co-crystals blend high mechanical flexibility and luminescence properties. The hydrogen bonded co-crystals are non-emissive in nature owing to excited state proton transfer dynamics. The rationale behind the fluorescence properties of these materials was also established from DFT calculations in a quantum mechanics/molecular mechanics (QM/MM) framework.
Collapse
Affiliation(s)
- Madhubrata Ghora
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Prabhat Majumdar
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Mohammed Anas
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Shinto Varghese
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| |
Collapse
|
26
|
Liu B, Lu Z, Tang B, Liu H, Liu H, Zhang Z, Ye K, Zhang H. Self-Waveguide Single-Benzene Organic Crystal with Ultralow-Temperature Elasticity as a Potential Flexible Material. Angew Chem Int Ed Engl 2020; 59:23117-23121. [PMID: 32909353 DOI: 10.1002/anie.202011857] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022]
Abstract
With the increasing popularity and burgeoning progress of space technology, the development of ultralow-temperature flexible functional materials is a great challenge. Herein, we report a highly emissive organic crystal combining ultralow-temperature elasticity and self-waveguide properties (when a crystal is excited, it emits light from itself, which travels through the crystal to the other end) based on a simple single-benzene emitter. This crystal displayed excellent elastic bending ability in liquid nitrogen (LN). Preliminary experiments on optical waveguiding in the bent crystal demonstrated that the light generated by the crystal itself could be confined and propagated within the crystal body between 170 and -196 °C. These results not only suggest a guideline for designing functional organic crystals with ultralow-temperature elasticity but also expand the application region of flexible materials to extreme environments, such as space technology.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China
| | - Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China
| | - Baolei Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China
| | - Huapeng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, China
| |
Collapse
|
27
|
Liu B, Lu Z, Tang B, Liu H, Liu H, Zhang Z, Ye K, Zhang H. Self‐Waveguide Single‐Benzene Organic Crystal with Ultralow‐Temperature Elasticity as a Potential Flexible Material. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun China
| | - Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun China
| | - Baolei Tang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun China
| | - Huapeng Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun China
| |
Collapse
|
28
|
Li S, Lu B, Fang X, Yan D. Manipulating Light‐Induced Dynamic Macro‐Movement and Static Photonic Properties within 1D Isostructural Hydrogen‐Bonded Molecular Cocrystals. Angew Chem Int Ed Engl 2020; 59:22623-22630. [DOI: 10.1002/anie.202009714] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Shuzhen Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Bo Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
29
|
Li S, Lu B, Fang X, Yan D. Manipulating Light‐Induced Dynamic Macro‐Movement and Static Photonic Properties within 1D Isostructural Hydrogen‐Bonded Molecular Cocrystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuzhen Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Bo Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
30
|
Naim K, Singh M, Sharma S, Nair RV, Venugopalan P, Chandra Sahoo S, Neelakandan PP. Exceptionally Plastic/Elastic Organic Crystals of a Naphthalidenimine-Boron Complex Show Flexible Optical Waveguide Properties. Chemistry 2020; 26:11979-11984. [PMID: 32618379 DOI: 10.1002/chem.202002641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 11/06/2022]
Abstract
The design of molecular compounds that exhibit flexibility is an emerging area of research. Although a fair amount of success has been achieved in the design of plastic or elastic crystals, realizing multidimensional plastic and elastic bending remains challenging. We report herein a naphthalidenimine-boron complex that showed size-dependent dual mechanical bending behavior whereas its parent Schiff base was brittle. Detailed crystallographic and spectroscopic analysis revealed the importance of boron in imparting the interesting mechanical properties. Furthermore, the luminescence of the molecule was turned-on subsequent to boron complexation, thereby allowing it to be explored for multimode optical waveguide applications. Our in-depth study of the size-dependent plastic and elastic bending of the crystals thus provides important insights in molecular engineering and could act as a platform for the development of future smart flexible materials for optoelectronic applications.
Collapse
Affiliation(s)
- Khalid Naim
- Institute of Nano Science and Technology (INST), Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, India
| | - Manjeet Singh
- Department of Chemistry, Panjab University (PU), Sector 14, Chandigarh, India
| | - Sachin Sharma
- Laboratory for Nano-scale Optics and Meta-materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Rajesh V Nair
- Laboratory for Nano-scale Optics and Meta-materials (LaNOM), Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Paloth Venugopalan
- Department of Chemistry, Panjab University (PU), Sector 14, Chandigarh, India
| | | | - Prakash P Neelakandan
- Institute of Nano Science and Technology (INST), Habitat Centre, Phase 10, Sector 64, Mohali, Punjab, India
| |
Collapse
|
31
|
Mei L, An S, Hu K, Wang L, Yu J, Huang Z, Kong X, Xia C, Chai Z, Shi W. Molecular Spring‐like Triple‐Helix Coordination Polymers as Dual‐Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐wen An
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry Sichuan University Chengdu 610064 China
| | - Kong‐qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Ji‐pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐wei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Xiang‐he Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Chuan‐qin Xia
- College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhi‐fang Chai
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Wei‐qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
32
|
Bhattacharya B, Roy D, Dey S, Puthuvakkal A, Bhunia S, Mondal S, Chowdhury R, Bhattacharya M, Mandal M, Manoj K, Mandal PK, Reddy CM. Mechanical‐Bending‐Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Bhattacharya
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Debjit Roy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Somnath Dey
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Anisha Puthuvakkal
- Photosciences and Photonics Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - Surojit Bhunia
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Saikat Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Manjima Bhattacharya
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Mrinal Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - Kochunnoonny Manoj
- Photosciences and Photonics Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695019 India
| | - Prasun K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
- Centre for Advanced Functional Materials (CAFM) Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia, West Bengal India
| |
Collapse
|
33
|
Bhattacharya B, Roy D, Dey S, Puthuvakkal A, Bhunia S, Mondal S, Chowdhury R, Bhattacharya M, Mandal M, Manoj K, Mandal PK, Reddy CM. Mechanical-Bending-Induced Fluorescence Enhancement in Plastically Flexible Crystals of a GFP Chromophore Analogue. Angew Chem Int Ed Engl 2020; 59:19878-19883. [PMID: 32667123 DOI: 10.1002/anie.202007760] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Indexed: 01/25/2023]
Abstract
Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.
Collapse
Affiliation(s)
- Biswajit Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Somnath Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Anisha Puthuvakkal
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Surojit Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Saikat Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Rituparno Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Manjima Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Mrinal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - Kochunnoonny Manoj
- Photosciences and Photonics, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India.,Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research (IISER), Kolkata, 741246, Nadia, West Bengal, India
| |
Collapse
|
34
|
Shtukenberg AG, Drori R, Sturm EV, Vidavsky N, Haddad A, Zheng J, Estroff LA, Weissman H, Wolf SG, Shimoni E, Li C, Fellah N, Efrati E, Kahr B. Crystals of Benzamide, the First Polymorphous Molecular Compound, Are Helicoidal. Angew Chem Int Ed Engl 2020; 59:14593-14601. [PMID: 32472617 DOI: 10.1002/anie.202005738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The growth of spontaneously twisted crystals is a common but poorly understood phenomenon. An analysis of the formation of twisted crystals of a metastable benzamide polymorph (form II) crystallizing from highly supersaturated aqueous and ethanol solutions is given here. Benzamide, the first polymorphic molecular crystal reported (1832), would have been the first helicoidal crystal observed had the original authors undertaken an analysis by light microscopy. Polymorphism and twisting frequently concur as they are both associated with high thermodynamic driving forces for crystallization. Optical and electron microscopies as well as electron and powder X-ray diffraction reveal a complex lamellar structure of benzamide form II needle-like crystals. The internal stress produced by the overgrowth of lamellae is shown to be able to create a twist moment that is responsible for the observed non-classical morphologies.
Collapse
Affiliation(s)
- Alexander G Shtukenberg
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Ran Drori
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Elena V Sturm
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Asaf Haddad
- Department of Physics of Complex Systems, Faculty of Physics, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Jason Zheng
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, 210 Bard Hall, Ithaca, NY, 14850, USA.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, 420 Physical Sciences Building, Ithaca, NY, 14853, USA
| | - Haim Weissman
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Sharon G Wolf
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Chao Li
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Noalle Fellah
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Faculty of Physics, Weizmann Institute of Science, 234 Hertzel Street, PO Box 26, 7610001, Rehovot, Israel
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
35
|
Shtukenberg AG, Drori R, Sturm EV, Vidavsky N, Haddad A, Zheng J, Estroff LA, Weissman H, Wolf SG, Shimoni E, Li C, Fellah N, Efrati E, Kahr B. Crystals of Benzamide, the First Polymorphous Molecular Compound, Are Helicoidal. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander G. Shtukenberg
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| | - Ran Drori
- Department of Chemistry and Biochemistry Yeshiva University 245 Lexington Avenue New York NY 10016 USA
| | - Elena V. Sturm
- Department of Chemistry University of Konstanz Universitätsstraße 10 78457 Konstanz Germany
| | - Netta Vidavsky
- Department of Chemical Engineering Ben-Gurion University of the Negev 84105 Beer Sheva Israel
| | - Asaf Haddad
- Department of Physics of Complex Systems Faculty of Physics Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Jason Zheng
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| | - Lara A. Estroff
- Department of Materials Science and Engineering Cornell University 210 Bard Hall Ithaca NY 14850 USA
- Kavli Institute at Cornell for Nanoscale Science Cornell University 420 Physical Sciences Building Ithaca NY 14853 USA
| | - Haim Weissman
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support Faculty of Chemistry Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Eyal Shimoni
- Department of Chemical Research Support Faculty of Chemistry Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Chao Li
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| | - Noalle Fellah
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| | - Efi Efrati
- Department of Physics of Complex Systems Faculty of Physics Weizmann Institute of Science 234 Hertzel Street, PO Box 26 7610001 Rehovot Israel
| | - Bart Kahr
- Department of Chemistry and Molecular Design Institute New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
36
|
Highly Conducting and Flexible Radical Crystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Kwon T, Koo JY, Choi HC. Highly Conducting and Flexible Radical Crystals. Angew Chem Int Ed Engl 2020; 59:16436-16439. [PMID: 32539211 DOI: 10.1002/anie.202006263] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/07/2022]
Abstract
Together with high conductivity, high flexibility is an important property required for next generation organic electronic components. Both properties are difficult to achieve together especially when the components are crystalline because of the intrinsic high brittleness of organic molecular crystals. We report an organic radical crystal system that has both high flexibility and high conductivity. The crystal consists of 9,10-bis(phenylethynyl)anthracene radical cation (BPEA.+ ) units, and shows flexibility under pressure with high conductivity in ambient condition exhibiting average conductivity of 2.68 S cm-1 when normal linear shape, as well as 2.43 S cm-1 when bent. The structural analysis reveals that both a short π-π distance (3.290 Å) between BPEA.+ units that are aligned along the crystal length direction, and the presence of PF6 - counter ions induce flexibility and high electrical conductivity.
Collapse
Affiliation(s)
- Taeyeon Kwon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jin Young Koo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
38
|
Mei L, An S, Hu K, Wang L, Yu J, Huang Z, Kong X, Xia C, Chai Z, Shi W. Molecular Spring‐like Triple‐Helix Coordination Polymers as Dual‐Stress and Thermally Responsive Crystalline Metal–Organic Materials. Angew Chem Int Ed Engl 2020; 59:16061-16068. [DOI: 10.1002/anie.202003808] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/11/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Mei
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐wen An
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry Sichuan University Chengdu 610064 China
| | - Kong‐qiu Hu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Ji‐pan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐wei Huang
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Xiang‐he Kong
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Chuan‐qin Xia
- College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhi‐fang Chai
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo 315201 China
| | - Wei‐qun Shi
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Kusumoto S, Saso A, Ohmagari H, Hasegawa M, Kim Y, Nakamura M, Lindoy LF, Hayami S. Solvent-Dependent Bending Ability of Salen-Derived Organic Crystals. Chempluschem 2020; 85:1692-1696. [PMID: 32558396 DOI: 10.1002/cplu.202000362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/15/2020] [Indexed: 11/09/2022]
Abstract
The formation of plastic or brittle organic crystals of salen derivatives that depend on the solvents employed for crystallization is demonstrated. Large yellow crystals (ranging from mm to cm size) of ten different salen derivatives were obtained and investigated. Among them, (bis(2-hydroxyacetophenone)ethylenediimine) 2, which was recrystallized from dichloromethane, tetrahydrofuran or chloroform, exhibited plastic deformation behaviour when mechanical force was applied to the (001) face. In contrast, when 2 was recrystallized from benzene, brittle crystals were obtained. Face indexing confirmed that different crystal faces were obtained by depending on the solvent employed for recrystallization, which leads to either flexible (plastic) or brittle crystals. Photoluminescence with a band maximum at 510 nm and thermochromism related to tautomerism between OH and NH forms were also investigated, and indicate that 2 is a flexible organic single-crystal material with multifunctional properties.
Collapse
Affiliation(s)
- Sotaro Kusumoto
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Akira Saso
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Kanagawa, Japan
| | - Hitomi Ohmagari
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Kanagawa, Japan
| | - Miki Hasegawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Kanagawa, Japan
| | - Yang Kim
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
40
|
Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Mechanophotonics: Flexible Single‐Crystal Organic Waveguides and Circuits. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003820] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mari Annadhasan
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| | - Abhijeet R. Agrawal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Surojit Bhunia
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
- Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Vuppu Vinay Pradeep
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| | - Sanjio S. Zade
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - C. Malla Reddy
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
- Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur West Bengal 741246 India
| | - Rajadurai Chandrasekar
- Functional Molecular Nano/Micro Solids Laboratory School of Chemistry University of Hyderabad Prof. C. R. Rao Road, Gachibowli Hyderabad 500 046 Telangana India
| |
Collapse
|
41
|
Annadhasan M, Agrawal AR, Bhunia S, Pradeep VV, Zade SS, Reddy CM, Chandrasekar R. Mechanophotonics: Flexible Single-Crystal Organic Waveguides and Circuits. Angew Chem Int Ed Engl 2020; 59:13852-13858. [PMID: 32392396 DOI: 10.1002/anie.202003820] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Indexed: 01/23/2023]
Abstract
We present the one-dimensional optical-waveguiding crystal dithieno[3,2-a:2',3'-c]phenazine with a high aspect ratio, high mechanical flexibility, and selective self-absorbance of the blue part of its fluorescence (FL). While macrocrystals exhibit elasticity, microcrystals deposited at a glass surface behave more like plastic crystals due to significant surface adherence, making them suitable for constructing photonic circuits via micromechanical operation with an atomic-force-microscopy cantilever tip. The flexible crystalline waveguides display optical-path-dependent FL signals at the output termini in both straight and bent configurations, making them appropriate for wavelength-division multiplexing technologies. A reconfigurable 2×2-directional coupler fabricated via micromanipulation by combining two arc-shaped crystals splits the optical signal via evanescent coupling and delivers the signals at two output terminals with different splitting ratios. The presented mechanical micromanipulation technique could also be effectively extended to other flexible crystals.
Collapse
Affiliation(s)
- Mari Annadhasan
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Abhijeet R Agrawal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Surojit Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Vuppu Vinay Pradeep
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Sanjio S Zade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - C Malla Reddy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Rajadurai Chandrasekar
- Functional Molecular Nano/Micro Solids Laboratory, School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500 046, Telangana, India
| |
Collapse
|
42
|
Liu H, Lu Z, Tang B, Qu C, Zhang Z, Zhang H. A Flexible Organic Single Crystal with Plastic‐Twisting and Elastic‐Bending Capabilities and Polarization‐Rotation Function. Angew Chem Int Ed Engl 2020; 59:12944-12950. [DOI: 10.1002/anie.202002492] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/22/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Huapeng Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Baolei Tang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| |
Collapse
|
43
|
Liu H, Lu Z, Tang B, Qu C, Zhang Z, Zhang H. A Flexible Organic Single Crystal with Plastic‐Twisting and Elastic‐Bending Capabilities and Polarization‐Rotation Function. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002492] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huapeng Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Baolei Tang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Cheng Qu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Qianjin Street Changchun P. R. China
| |
Collapse
|
44
|
Mondal A, Bhattacharya B, Das S, Bhunia S, Chowdhury R, Dey S, Reddy CM. Metal‐like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Mondal
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Biswajit Bhattacharya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Susobhan Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Surojit Bhunia
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Somnath Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Institute of CrystallographyRWTH Aachen University Jägerstraße 17–19 52066 Aachen Germany
| | - C. Malla Reddy
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| |
Collapse
|
45
|
Mondal A, Bhattacharya B, Das S, Bhunia S, Chowdhury R, Dey S, Reddy CM. Metal‐like Ductility in Organic Plastic Crystals: Role of Molecular Shape and Dihydrogen Bonding Interactions in Aminoboranes. Angew Chem Int Ed Engl 2020; 59:10971-10980. [PMID: 32087039 DOI: 10.1002/anie.202001060] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/09/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Amit Mondal
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Biswajit Bhattacharya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Susobhan Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Surojit Bhunia
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Rituparno Chowdhury
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| | - Somnath Dey
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Institute of CrystallographyRWTH Aachen University Jägerstraße 17–19 52066 Aachen Germany
| | - C. Malla Reddy
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
- Centre for Advanced Functional Materials (CAFM)Indian Institute of Science Education and Research (IISER) Kolkata 741246 Nadia West Bengal India
| |
Collapse
|
46
|
Lu Z, Zhang Y, Liu H, Ye K, Liu W, Zhang H. Optical Waveguiding Organic Single Crystals Exhibiting Physical and Chemical Bending Features. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Yuping Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Wentao Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| |
Collapse
|
47
|
Lu Z, Zhang Y, Liu H, Ye K, Liu W, Zhang H. Optical Waveguiding Organic Single Crystals Exhibiting Physical and Chemical Bending Features. Angew Chem Int Ed Engl 2020; 59:4299-4303. [PMID: 31943587 DOI: 10.1002/anie.201914026] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Bendable (elastic and plastic) organic single crystals have been widely studied as emerging flexible materials with highly ordered packing structures. However, even though manifold bendable organic crystals have been recently reported, most of them bend in response to only one stimulus. Herein, we report an organic single crystal of (Z)-4-(1-cyano-2-(4-(dimethylamino)phenyl)vinyl)benzonitrile, which bends under external stress (physical process) and also hydrochloric acid atmosphere (chemical process). This observation indicates that a single organic crystal, whose structure has been optimized simultaneously at both the molecular and supramolecular levels, may display multiple crystal-bending modes. Furthermore, the crystals exhibit bright orange-yellow emission and can serve as an active low-loss optical waveguide in both the straight and the bent state, which indicates a potential optical application.
Collapse
Affiliation(s)
- Zhuoqun Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Yuping Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Wentao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| |
Collapse
|
48
|
Yuan L, Xing M, Pan F. Polymorphs of 2,4,6-tris(4-pyridyl)-1,3,5-triazine and their mechanical properties. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2019; 75:987-993. [PMID: 32830678 DOI: 10.1107/s2052520619012514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/08/2019] [Indexed: 06/11/2023]
Abstract
The second polymorph of the compound 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT) is reported, TPT-II, which crystallizes in space group I2/a. Its higher density and more efficient space filling indicate the lower entropy of TPT-II, while its slightly lower melting point indicates its weaker intermolecular interactions. The conditions of the crystallization experiments for TPT-I and TPT-II are the dominant factors that determine the final crystalline products. The crystals of TPT-II are long needles. They exhibit bending behaviour along the crystallographic b direction when a mechanical force is imposed perpendicular to it, and regain their original shape after the external stress is removed. The elasticity of the single crystals is interpreted in terms of intermolecular interactions and an energy framework analysis.
Collapse
Affiliation(s)
- Liangqian Yuan
- College of Chemistry, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Luoyu Road 152, Wuhan, Hubei Province 430079, People's Republic of China
| | - Mengyao Xing
- College of Chemistry, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Luoyu Road 152, Wuhan, Hubei Province 430079, People's Republic of China
| | - Fangfang Pan
- College of Chemistry, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, Central China Normal University, Luoyu Road 152, Wuhan, Hubei Province 430079, People's Republic of China
| |
Collapse
|
49
|
Liu H, Ye K, Zhang Z, Zhang H. An Organic Crystal with High Elasticity at an Ultra‐Low Temperature (77 K) and Shapeability at High Temperatures. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912236] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huapeng Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University Qianjin Street Changchun P. R. China
| |
Collapse
|
50
|
Liu H, Ye K, Zhang Z, Zhang H. An Organic Crystal with High Elasticity at an Ultra-Low Temperature (77 K) and Shapeability at High Temperatures. Angew Chem Int Ed Engl 2019; 58:19081-19086. [PMID: 31625259 DOI: 10.1002/anie.201912236] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Indexed: 11/09/2022]
Abstract
Organic single crystals with elastic bending capability and potential applications in flexible devices and sensors have been elucidated. Exploring the temperature compatibility of elasticity is essential for defining application boundaries of elastic materials. However, related studies have rarely been reported for elastic organic crystals. Now, an organic crystal displays elasticity even in liquid nitrogen (77 K). The elasticity can be maintained below ca. 150 °C. At higher temperatures, the heat setting property enables us to make various shapes of crystalline fibers based on this single kind of crystal. Through detailed crystallographic analyses and contrast experiments, the mechanisms behind the unusual low-temperature elasticity and high-temperature heat setting are disclosed.
Collapse
Affiliation(s)
- Huapeng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Zuolun Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Hongyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| |
Collapse
|