1
|
Wax N, Walke JB, Haak DC, Belden LK. Comparative genomics of bacteria from amphibian skin associated with inhibition of an amphibian fungal pathogen, Batrachochytrium dendrobatidis. PeerJ 2023; 11:e15714. [PMID: 37637170 PMCID: PMC10452622 DOI: 10.7717/peerj.15714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/16/2023] [Indexed: 08/29/2023] Open
Abstract
Chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), is a skin disease associated with worldwide amphibian declines. Symbiotic microbes living on amphibian skin interact with Bd and may alter infection outcomes. We completed whole genome sequencing of 40 bacterial isolates cultured from the skin of four amphibian species in the Eastern US. Each isolate was tested in vitro for the ability to inhibit Bd growth. The aim of this study was to identify genomic differences among the isolates and generate hypotheses about the genomic underpinnings of Bd growth inhibition. We identified sixty-five gene families that were present in all 40 isolates. Screening for common biosynthetic gene clusters revealed that this set of isolates contained a wide variety of clusters; the two most abundant clusters with potential antifungal activity were siderophores (N=17 isolates) and Type III polyketide synthases (N=22 isolates). We then examined various subsets of the 22 isolates in the phylum Proteobacteria for genes encoding specific compounds that may inhibit fungal growth, including chitinase and violacein. We identified differences in Agrobacterium and Sphingomonas isolates in the chitinase genes that showed some association with anti-Bd activity, as well as variation in the violacein genes in the Janthinobacterium isolates. Using a comparative genomics approach, we generated several testable hypotheses about differences among bacterial isolates from amphibian skin communities that could contribute to variation in the ability to inhibit Bd growth. Further work is necessary to explore and uncover the various mechanisms utilized by amphibian skin bacterial isolates to inhibit Bd.
Collapse
Affiliation(s)
- Noah Wax
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Jenifer B. Walke
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
- Department of Biology, Eastern Washington University, Cheney, WA, United States of America
| | - David C. Haak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Lisa K. Belden
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
2
|
Mrudulakumari Vasudevan U, Mai DHA, Krishna S, Lee EY. Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnol Adv 2023; 63:108097. [PMID: 36634856 DOI: 10.1016/j.biotechadv.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Methanotrophs are potent natural producers of several bioactive secondary metabolites (SMs) including isoprenoids, polymers, peptides, and vitamins. Cryptic biosynthetic gene clusters identified from these microbes via genome mining hinted at the vast and hidden SM biosynthetic potential of these microbes. Central carbon metabolism in methanotrophs offers rare pathway intermediate pools that could be further diversified using advanced synthetic biology tools to produce valuable SMs; for example, plant polyketides, rare carotenoids, and fatty acid-derived SMs. Recent advances in pathway reconstruction and production of isoprenoids, squalene, ectoine, polyhydroxyalkanoate copolymer, cadaverine, indigo, and shinorine serve as proof-of-concept. This review provides theoretical guidance for developing methanotrophs as microbial chassis for high-value SMs. We summarize the distinct secondary metabolic potentials of type I and type II methanotrophs, with specific attention to products relevant to biomedical applications. This review also includes native and non-native SMs from methanotrophs, their therapeutic potential, strategies to induce silent biosynthetic gene clusters, and challenges.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dung Hoang Anh Mai
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
3
|
Wan X, Yao G, Wang K, Bao S, Han P, Wang F, Song T, Jiang H. Transcriptomic analysis of polyketide synthesis in dinoflagellate, Prorocentrum lima. HARMFUL ALGAE 2023; 123:102391. [PMID: 36894212 DOI: 10.1016/j.hal.2023.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. P. lima can produce polyketide compounds, such as okadaic acid (OA), dinophysistoxin (DTX) and their analogues, which are responsible for diarrhetic shellfish poisoning (DSP). Studying the molecular mechanism of DSP toxin biosynthesis is crucial for understanding the environmental driver influencing toxin biosynthesis as well as for better monitoring of marine ecosystems. Commonly, polyketides are produced by polyketide synthases (PKS). However, no gene has been confirmatively assigned to DSP toxin production. Here, we assembled a transcriptome from 94,730,858 Illumina RNAseq reads using Trinity, resulting in 147,527 unigenes with average sequence length of 1035 nt. Using bioinformatics analysis methods, we found 210 unigenes encoding single-domain PKS with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 15 transcripts encoding multi-domain PKS (forming typical type I PKSs modules) and 5 transcripts encoding hybrid nonribosomal peptide synthetase (NRPS)/PKS were found. Using comparative transcriptome and differential expression analysis, a total of 16 PKS genes were identified to be up-regulated in phosphorus-limited cultures, which was related to the up regulation of toxin expression. In concert with other recent transcriptome analyses, this study contributes to the building consensus that dinoflagellates may utilize a combination of Type I multi-domain and single-domain PKS proteins, in an as yet undefined manner, to synthesize polyketides. Our study provides valuable genomic resource for future research in order to understand the complex mechanism of toxin production in this dinoflagellate.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
4
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Yoshimura A, Covington BC, Gallant É, Zhang C, Li A, Seyedsayamdost MR. Unlocking Cryptic Metabolites with Mass Spectrometry-Guided Transposon Mutant Selection. ACS Chem Biol 2020; 15:2766-2774. [PMID: 32808751 DOI: 10.1021/acschembio.0c00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The products of most secondary metabolite biosynthetic gene clusters (BGCs) have yet to be discovered, in part due to low expression levels in laboratory cultures. Reporter-guided mutant selection (RGMS) has recently been developed for this purpose: a mutant library is generated and screened, using genetic reporters to a chosen BGC, to select transcriptionally active mutants that then enable the characterization of the "cryptic" metabolite. The requirement for genetic reporters limits the approach to a single pathway within genetically tractable microorganisms. Herein, we utilize untargeted metabolomics in conjunction with transposon mutagenesis to provide a global read-out of secondary metabolism across large numbers of mutants. We employ self-organizing map analytics and imaging mass spectrometry to identify and characterize seven cryptic metabolites from mutant libraries of two different Burkholderia species. Applications of the methodologies reported can expand our understanding of the products and regulation of cryptic BGCs across phylogenetically diverse bacteria.
Collapse
Affiliation(s)
- Aya Yoshimura
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Brett C. Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chen Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Anran Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Mao D, Yoshimura A, Wang R, Seyedsayamdost MR. Reporter-Guided Transposon Mutant Selection for Activation of Silent Gene Clusters in Burkholderia thailandensis. Chembiochem 2020; 21:1826-1831. [PMID: 31984619 DOI: 10.1002/cbic.201900748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression. Herein, we apply a similar approach to Burkholderia thailandensis and, using transposon mutagenesis, mutagenize three strains, each carrying a fluorescent reporter in the malleilactone (mal), capistruin (cap), or an unidentified ribosomal peptide (tomm) gene cluster. We show that even a small library of <500 mutants can be used to induce expression of each cluster. We also explore the mechanism of activation and find that inhibition of pyrimidine biosynthesis is linked to the induction of the mal cluster. Both a transposon insertion into pyrF as well as small-molecule-mediated inhibition of PyrF trigger malleilactone biosynthesis. Our results pave the way toward the broad application of RGMS and related approaches to Burkholderia spp.
Collapse
Affiliation(s)
- Dainan Mao
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Aya Yoshimura
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Rurun Wang
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
7
|
Trottmann F, Ishida K, Franke J, Stanišić A, Ishida‐Ito M, Kries H, Pohnert G, Hertweck C. Sulfonium Acids Loaded onto an Unusual Thiotemplate Assembly Line Construct the Cyclopropanol Warhead of a
Burkholderia
Virulence Factor. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Jakob Franke
- Institute of Botany Leibniz University Hannover 30419 Hannover Germany
| | - Aleksa Stanišić
- Junior Research Group Biosynthetic Design of Natural Products Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Mie Ishida‐Ito
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry Friedrich Schiller University Jena 07743 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstrasse 11a 07745 Jena Germany
- Natural Product Chemistry Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
8
|
Trottmann F, Ishida K, Franke J, Stanišić A, Ishida-Ito M, Kries H, Pohnert G, Hertweck C. Sulfonium Acids Loaded onto an Unusual Thiotemplate Assembly Line Construct the Cyclopropanol Warhead of a Burkholderia Virulence Factor. Angew Chem Int Ed Engl 2020; 59:13511-13515. [PMID: 32314848 PMCID: PMC7496086 DOI: 10.1002/anie.202003958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Pathogenic bacteria of the Burkholderia pseudomallei group cause severe infectious diseases such as glanders and melioidosis. Malleicyprols were identified as important bacterial virulence factors, yet the biosynthetic origin of their cyclopropanol warhead has remained enigmatic. By a combination of mutational analysis and metabolomics we found that sulfonium acids, dimethylsulfoniumpropionate (DMSP) and gonyol, known as osmolytes and as crucial components in the global organosulfur cycle, are key intermediates en route to the cyclopropanol unit. Functional genetics and in vitro analyses uncover a specialized pathway to DMSP involving a rare prokaryotic SET‐domain methyltransferase for a cryptic methylation, and show that DMSP is loaded onto the NRPS‐PKS hybrid assembly line by an adenylation domain dedicated to zwitterionic starter units. Then, the megasynthase transforms DMSP into gonyol, as demonstrated by heterologous pathway reconstitution in E. coli.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jakob Franke
- Institute of Botany, Leibniz University Hannover, 30419, Hannover, Germany
| | - Aleksa Stanišić
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Mie Ishida-Ito
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
9
|
Ueoka R, Meoded RA, Gran‐Scheuch A, Bhushan A, Fraaije MW, Piel J. Genome Mining of Oxidation Modules in
trans
‐Acyltransferase Polyketide Synthases Reveals a Culturable Source for Lobatamides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Reiko Ueoka
- Institute of Microbiology ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Roy A. Meoded
- Institute of Microbiology ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Alejandro Gran‐Scheuch
- Molecular Enzymology Group University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
- Department of Chemical and Bioprocesses Engineering Pontificia Universidad Católica de Chile Avenida Vicuña Mackenna 4860 7820436 Santiago Chile
| | - Agneya Bhushan
- Institute of Microbiology ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Marco W. Fraaije
- Molecular Enzymology Group University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology ETH Zurich Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
10
|
Ueoka R, Meoded RA, Gran‐Scheuch A, Bhushan A, Fraaije MW, Piel J. Genome Mining of Oxidation Modules in trans-Acyltransferase Polyketide Synthases Reveals a Culturable Source for Lobatamides. Angew Chem Int Ed Engl 2020; 59:7761-7765. [PMID: 32040255 PMCID: PMC7586987 DOI: 10.1002/anie.201916005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 11/22/2022]
Abstract
Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are multimodular megaenzymes that biosynthesize many bioactive natural products. They contain a remarkable range of domains and module types that introduce different substituents into growing polyketide chains. As one such modification, we recently reported Baeyer-Villiger-type oxygen insertion into nascent polyketide backbones, thereby generating malonyl thioester intermediates. In this work, genome mining focusing on architecturally diverse oxidation modules in trans-AT PKSs led us to the culturable plant symbiont Gynuella sunshinyii, which harbors two distinct modules in one orphan PKS. The PKS product was revealed to be lobatamide A, a potent cytotoxin previously only known from a marine tunicate. Biochemical studies show that one module generates glycolyl thioester intermediates, while the other is proposed to be involved in oxime formation. The data suggest varied roles of oxygenation modules in the biosynthesis of polyketide scaffolds and support the importance of trans-AT PKSs in the specialized metabolism of symbiotic bacteria.
Collapse
Affiliation(s)
- Reiko Ueoka
- Institute of MicrobiologyETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Roy A. Meoded
- Institute of MicrobiologyETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Alejandro Gran‐Scheuch
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
- Department of Chemical and Bioprocesses EngineeringPontificia Universidad Católica de ChileAvenida Vicuña Mackenna 48607820436SantiagoChile
| | - Agneya Bhushan
- Institute of MicrobiologyETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Marco W. Fraaije
- Molecular Enzymology GroupUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Jörn Piel
- Institute of MicrobiologyETH ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| |
Collapse
|
11
|
Fäseke VC, Raps FC, Sparr C. Polyketide Cyclizations for the Synthesis of Polyaromatics. Angew Chem Int Ed Engl 2020; 59:6975-6983. [DOI: 10.1002/anie.201911255] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/05/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Vincent C. Fäseke
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Felix C. Raps
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
12
|
Fäseke VC, Raps FC, Sparr C. Polyketide Cyclizations for the Synthesis of Polyaromatics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Vincent C. Fäseke
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Felix C. Raps
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
13
|
Trottmann F, Franke J, Richter I, Ishida K, Cyrulies M, Dahse H, Regestein L, Hertweck C. Cyclopropanol Warhead in Malleicyprol Confers Virulence of Human- and Animal-Pathogenic Burkholderia Species. Angew Chem Int Ed Engl 2019; 58:14129-14133. [PMID: 31353766 PMCID: PMC6790655 DOI: 10.1002/anie.201907324] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/20/2019] [Indexed: 12/16/2022]
Abstract
Burkholderia species such as B. mallei and B. pseudomallei are bacterial pathogens causing fatal infections in humans and animals (glanders and melioidosis), yet knowledge on their virulence factors is limited. While pathogenic effects have been linked to a highly conserved gene locus (bur/mal) in the B. mallei group, the metabolite associated to the encoded polyketide synthase, burkholderic acid (syn. malleilactone), could not explain the observed phenotypes. By metabolic profiling and molecular network analyses of the model organism B. thailandensis, the primary products of the cryptic pathway were identified as unusual cyclopropanol-substituted polyketides. First, sulfomalleicyprols were identified as inactive precursors of burkholderic acid. Furthermore, a highly reactive upstream metabolite, malleicyprol, was discovered and obtained in two stabilized forms. Cell-based assays and a nematode infection model showed that the rare natural product confers cytotoxicity and virulence.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Jakob Franke
- Institute of Organic Chemistry, BMWZLeibniz University Hannover30167HannoverGermany
| | - Ingrid Richter
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
| | - Michael Cyrulies
- Department Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Hans‐Martin Dahse
- Department Infection BiologyLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Lars Regestein
- Department Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology (HKI)07745JenaGermany
| | - Christian Hertweck
- Department of Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (HKI)Beutenbergstr. 11a07745JenaGermany
- Natural Product ChemistryFaculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
14
|
Verma A, Kohli GS, Harwood DT, Ralph PJ, Murray SA. Transcriptomic investigation into polyketide toxin synthesis in Ostreopsis (Dinophyceae) species. Environ Microbiol 2019; 21:4196-4211. [PMID: 31415128 DOI: 10.1111/1462-2920.14780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/01/2022]
Abstract
In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth. Their ecological success may be related to their production of complex toxic polyketide compounds. Ostreopsis species produce potent palytoxin-like compounds (PLTX), which are associated with human skin and eye irritations, and illnesses through the consumption of contaminated seafood. To investigate the genetic basis of PLTX-like compounds, we sequenced and annotated transcriptomes from two PLTX-producing Ostreopsis species; O. cf. ovata, O. cf. siamensis, one non-PLTX producing species, O. rhodesae and compared them to a close phylogenetic relative and non-PLTX producer, Coolia malayensis. We found no clear differences in the presence or diversity of ketosynthase and ketoreductase transcripts between PLTX producing and non-producing Ostreopsis and Coolia species, as both groups contained >90 and > 10 phylogenetically diverse ketosynthase and ketoreductase transcripts, respectively. We report for the first-time type I single-, multi-domain polyketide synthases (PKSs) and hybrid non-ribosomal peptide synthase/PKS transcripts from all species. The long multi-modular PKSs were insufficient by themselves to synthesize the large complex polyether backbone of PLTX-like compounds. This implies that numerous PKS domains, including both single and multi-, work together on the biosynthesis of PLTX-like and other related polyketide compounds.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Gurjeet S Kohli
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Alfred-Wegener-Institute Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 27515, Germany
| | - D Tim Harwood
- Cawthron Institute, 98, Halifax Street East, Nelson, 7010, New Zealand
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
15
|
Trottmann F, Franke J, Richter I, Ishida K, Cyrulies M, Dahse H, Regestein L, Hertweck C. Cyclopropanol Warhead in Malleicyprol Confers Virulence of Human‐ and Animal‐Pathogenic
Burkholderia
Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Jakob Franke
- Institute of Organic Chemistry, BMWZ Leibniz University Hannover 30167 Hannover Germany
| | - Ingrid Richter
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
| | - Michael Cyrulies
- Department Bio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Hans‐Martin Dahse
- Department Infection Biology Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Lars Regestein
- Department Bio Pilot Plant Leibniz Institute for Natural Product Research and Infection Biology (HKI) 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry Leibniz Institute for Natural Product Research and Infection Biology (HKI) Beutenbergstr. 11a 07745 Jena Germany
- Natural Product Chemistry Faculty of Biological Sciences Friedrich Schiller University Jena 07743 Jena Germany
| |
Collapse
|
16
|
Okada BK, Li A, Seyedsayamdost MR. Identification of the Hypertension Drug Guanfacine as an Antivirulence Agent in Pseudomonas aeruginosa. Chembiochem 2019; 20:2005-2011. [PMID: 30927315 PMCID: PMC6814388 DOI: 10.1002/cbic.201900129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/11/2022]
Abstract
An alternative solution to the cyclical development of new antibiotics is the concept of disarming pathogens without affecting their growth, thereby eliminating the selective pressures that lead to resistant phenotypes. Here, we have employed our previously developed HiTES methodology to identify one such compound against the ESKAPE pathogen Pseudomonas aeruginosa. Rather than induce silent biosynthetic gene clusters, we used HiTES to suppress actively expressed virulence genes. By screening a library of 770 FDA-approved drugs, we identified guanfacine, a clinical hypertension drug, as an antivirulence agent in P. aeruginosa. Follow-up studies showed that guanfacine reduces biofilm formation and pyocycanin production without altering growth. Moreover, we identified a homologue of QseC, a sensor His kinase used by multiple pathogens to turn on virulence, as a target of guanfacine. Our studies suggest that guanfacine might be an attractive antivirulence lead in P. aeruginosa and provide a template for uncovering such molecules by screening for downregulators of actively expressed biosynthetic genes.
Collapse
Affiliation(s)
- Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
17
|
Meoded RA, Ueoka R, Helfrich EJN, Jensen K, Magnus N, Piechulla B, Piel J. A Polyketide Synthase Component for Oxygen Insertion into Polyketide Backbones. Angew Chem Int Ed Engl 2018; 57:11644-11648. [PMID: 29898240 PMCID: PMC6174933 DOI: 10.1002/anie.201805363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/08/2018] [Indexed: 12/31/2022]
Abstract
Enzymatic core components from trans-acyltransferase polyketide synthases (trans-AT PKSs) catalyze exceptionally diverse biosynthetic transformations to generate structurally complex bioactive compounds. Here we focus on a group of oxygenases identified in various trans-AT PKS pathways, including those for pederin, oocydins, and toblerols. Using the oocydin pathway homologue (OocK) from Serratia plymuthica 4Rx13 and N-acetylcysteamine (SNAC) thioesters as test surrogates for acyl carrier protein (ACP)-tethered intermediates, we show that the enzyme inserts oxygen into β-ketoacyl moieties to yield malonyl ester SNAC products. Based on these data and the identification of a non-hydrolyzed oocydin congener with retained ester moiety, we propose a unified biosynthetic pathway of oocydins, haterumalides, and biselides. By providing access to internal ester, carboxylate pseudostarter, and terminal hydroxyl functions, oxygen insertion into polyketide backbones greatly expands the biosynthetic scope of PKSs.
Collapse
Affiliation(s)
- Roy A. Meoded
- Institute of MicrobiologyEigenössische Technische Hochschule (ETH) ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Reiko Ueoka
- Institute of MicrobiologyEigenössische Technische Hochschule (ETH) ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Eric J. N. Helfrich
- Institute of MicrobiologyEigenössische Technische Hochschule (ETH) ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Katja Jensen
- Institute of MicrobiologyEigenössische Technische Hochschule (ETH) ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| | - Nancy Magnus
- Institute for Biological SciencesUniversity of RostockAlbert-Einstein-Straße 318059RostockGermany
| | - Birgit Piechulla
- Institute for Biological SciencesUniversity of RostockAlbert-Einstein-Straße 318059RostockGermany
| | - Jörn Piel
- Institute of MicrobiologyEigenössische Technische Hochschule (ETH) ZurichVladimir-Prelog-Weg 48093ZurichSwitzerland
| |
Collapse
|
18
|
Meoded RA, Ueoka R, Helfrich EJN, Jensen K, Magnus N, Piechulla B, Piel J. A Polyketide Synthase Component for Oxygen Insertion into Polyketide Backbones. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Roy A. Meoded
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Reiko Ueoka
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Eric J. N. Helfrich
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Katja Jensen
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Nancy Magnus
- Institute for Biological Sciences; University of Rostock; Albert-Einstein-Straße 3 18059 Rostock Germany
| | - Birgit Piechulla
- Institute for Biological Sciences; University of Rostock; Albert-Einstein-Straße 3 18059 Rostock Germany
| | - Jörn Piel
- Institute of Microbiology; Eigenössische Technische Hochschule (ETH) Zurich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| |
Collapse
|
19
|
Koppel N, Balskus EP. Exploring and Understanding the Biochemical Diversity of the Human Microbiota. Cell Chem Biol 2016; 23:18-30. [PMID: 26933733 DOI: 10.1016/j.chembiol.2015.12.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 12/26/2022]
Abstract
Recent studies have illuminated a remarkable diversity and abundance of microbes living on and within the human body. While we are beginning to appreciate associations of certain bacteria and genes with particular host physiological states, considerable information is lacking about the relevant functional activities of the human microbiota. The human gut microbiome encodes tremendous potential for the biosynthesis and transformation of compounds that are important for both microbial and host physiology. Implementation of chemical knowledge and techniques will be required to improve our understanding of the biochemical diversity of the human microbiota. Such efforts include the characterization of novel microbial enzymes and pathways, isolation of microbial natural products, and development of tools to modulate biochemical functions of the gut microbiota. Ultimately, a molecular understanding of gut microbial activities will be critical for elucidating and manipulating these organisms' contributions to human health and disease.
Collapse
Affiliation(s)
- Nitzan Koppel
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
20
|
Franke J, Ishida K, Ishida-Ito M, Hertweck C. Nitro versus Hydroxamate in Siderophores of Pathogenic Bacteria: Effect of Missing Hydroxylamine Protection in Malleobactin Biosynthesis. Angew Chem Int Ed Engl 2013; 52:8271-5. [DOI: 10.1002/anie.201303196] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 01/13/2023]
|
21
|
Franke J, Ishida K, Ishida-Ito M, Hertweck C. Nitro versus Hydroxamate in Siderophores of Pathogenic Bacteria: Effect of Missing Hydroxylamine Protection in Malleobactin Biosynthesis. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|