1
|
Imiołek M, Winssinger N. Two-Helix Supramolecular Proteomimetic Binders Assembled via PNA-Assisted Disulfide Crosslinking. Chembiochem 2023; 24:e202200561. [PMID: 36349499 DOI: 10.1002/cbic.202200561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Peptidic motifs folded in a defined conformation are able to inhibit protein-protein interactions (PPIs) covering large interfaces and as such they are biomedical molecules of interest. Mimicry of such natural structures with synthetically tractable constructs often requires complex scaffolding and extensive optimization to preserve the fidelity of binding to the target. Here, we present a novel proteomimetic strategy based on a 2-helix binding motif that is brought together by hybridization of peptide nucleic acids (PNA) and stabilized by a rationally positioned intermolecular disulfide crosslink. Using a solid phase synthesis approach (SPPS), the building blocks are easily accessible and such supramolecular peptide-PNA helical hybrids could be further coiled using precise templated chemistry. The elaboration of the structural design afforded high affinity SARS CoV-2 RBD (receptor binding domain) binders without interference with the underlying peptide sequence, creating a basis for a new architecture of supramolecular proteomimetics.
Collapse
Affiliation(s)
- Mateusz Imiołek
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
2
|
Teng X, Dai Y, Li J. Module Assembly Strategy for Single‐Cell Nucleic Acid Imaging at the Sub‐Molecule Level. Chemistry 2022; 28:e202104628. [DOI: 10.1002/chem.202104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Xucong Teng
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| | - Yicong Dai
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| | - Jinghong Li
- Department of Chemistry Center for BioAnalytical Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University 100084 Beijing P. R. China
| |
Collapse
|
3
|
Roth M, Seitz O. A Self-immolative Molecular Beacon for Amplified Nucleic Acid Detection*. Chemistry 2021; 27:14189-14194. [PMID: 34516006 PMCID: PMC8597011 DOI: 10.1002/chem.202102600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Indexed: 01/18/2023]
Abstract
Fluorogenic hybridization probes allow the detection of RNA and DNA sequences in homogeneous solution. Typically, one target molecule activates the fluorescence of a single probe molecule. This limits the sensitivity of nucleic acid detection. Herein, we report a self‐immolative molecular beacon (iMB) that escapes the one‐target/one‐probe paradigm. The iMB probe includes a photoreductively cleavable N‐alkyl‐picolinium (NAP) linkage within the loop region. A fluorophore at the 5’‐end serves, on the one hand, as a reporter group and, on the other hand, as a photosensitizer of a NAP‐linker cleavage reaction. In the absence of target, the iMB adopts a hairpin shape. Quencher groups prevent photo‐induced cleavage. The iMB opens upon hybridization with a target, and both fluorescent emission as well as photo‐reductive cleavage of the NAP linker can occur. In contrast to previous chemical amplification reactions, iMBs are unimolecular probes that undergo cleavage leading to products that have lower target affinity than the probes before reaction. Aided by catalysis, the method allowed the detection of 5 pm RNA target within 100 min.
Collapse
Affiliation(s)
- Magdalena Roth
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
4
|
McLoughlin NM, Kuepper A, Neubacher S, Grossmann TN. Synergistic DNA- and Protein-Based Recognition Promote an RNA-Templated Bio-orthogonal Reaction. Chemistry 2021; 27:10477-10483. [PMID: 33914384 PMCID: PMC8362040 DOI: 10.1002/chem.202101103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/28/2022]
Abstract
Biomolecular assemblies composed of proteins and oligonucleotides play a central role in biological processes. While in nature, oligonucleotides and proteins usually assemble via non-covalent interactions, synthetic conjugates have been developed which covalently link both modalities. The resulting peptide-oligonucleotide conjugates have facilitated novel biological applications as well as the design of functional supramolecular systems and materials. However, despite the importance of concerted protein/oligonucleotide recognition in nature, conjugation approaches have barely utilized the synergistic recognition abilities of such complexes. Herein, the structure-based design of peptide-DNA conjugates that bind RNA through Watson-Crick base pairing combined with peptide-mediated major groove recognition is reported. Two distinct conjugate families with tunable binding characteristics have been designed to adjacently bind a particular RNA sequence. In the resulting ternary complex, their peptide elements are located in proximity, a feature that was used to enable an RNA-templated click reaction. The introduced structure-based design approach opens the door to novel functional biomolecular assemblies.
Collapse
Affiliation(s)
- Niall M. McLoughlin
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
| | - Arne Kuepper
- Chemical Genomics Centre of the Max Planck SocietyDortmund44227Germany
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS)Vrije Universiteit AmsterdamAmsterdam1081 HZThe Netherlands
- Chemical Genomics Centre of the Max Planck SocietyDortmund44227Germany
| |
Collapse
|
5
|
Debiais M, Lelievre A, Vasseur J, Müller S, Smietana M. Boronic Acid-Mediated Activity Control of Split 10-23 DNAzymes. Chemistry 2021; 27:1138-1144. [PMID: 33058268 PMCID: PMC7839725 DOI: 10.1002/chem.202004227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/11/2022]
Abstract
The 10-23 DNAzyme is an artificially developed Mg2+ -dependent catalytic oligonucleotide that can cleave an RNA substrate in a sequence-specific fashion. In this study, new split 10-23 DNAzymes made of two nonfunctional fragments, one of which carries a boronic acid group at its 5' end, while the other has a ribonucleotide at its 3' end, were designed. Herein it is demonstrated that the addition of Mg2+ ions leads to assembly of the fragments, which in turn induces the formation of a new boronate internucleoside linkage that restores the DNAzyme activity. A systematic evaluation identified the best-performing system. The results highlight key features for efficient control of DNAzyme activity through the formation of boronate linkages.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| | - Amandine Lelievre
- University GreifswaldInstitute for BiochemistryFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Jean‐Jacques Vasseur
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| | - Sabine Müller
- University GreifswaldInstitute for BiochemistryFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Michael Smietana
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|
6
|
Kankia B. Quadruplex-Templated and Catalyzed Ligation of Nucleic Acids. Chembiochem 2020; 22:1261-1267. [PMID: 33217115 DOI: 10.1002/cbic.202000754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Indexed: 11/05/2022]
Abstract
Template-guided chemical reactions between nucleic acid strands are an important process in biomedical research. However, almost all of these reactions employ an oligonucleotide-templated approach that is based on the double-helix alignment. The moderate stability of the double helix makes this approach unsuitable for many chemical reactions, so alternative nucleic acid alignment mechanisms, demonstrating higher thermal and chemical stability, are desirable. Earlier, we described a noncovalent coupling mechanism between DNA strands through a quadruplex-and-Mg2+ connection (QMC). QMC is based on G-quadruplexes and allows unusually stable and specific interactions. Herein, a novel catalytic nucleic acid reaction, based on QMC, is described. This approach uses G-tetrads as a structural and recognition element without employing Watson-Crick complementarity rules at any stage of substrate/catalyst formation or interaction between them. Quadruplex-templated ligation can be achieved through the self-ligation of two nucleic acid strands, or through a quadruplex catalyst, which forms a G-triplex and specifically connects the strands. The process is extraordinarily robust and efficient. For instance, the ligation of carbodiimide-activated substrates can proceed in boiling solutions, and complete ligation is demonstrated within a minute. The quadruplex-templated and catalyzed reactions will create new opportunities for chemical reactions requiring harsh experimental conditions.
Collapse
Affiliation(s)
- Besik Kankia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Rossetti M, Bertucci A, Patiño T, Baranda L, Porchetta A. Programming DNA-Based Systems through Effective Molarity Enforced by Biomolecular Confinement. Chemistry 2020; 26:9826-9834. [PMID: 32428310 DOI: 10.1002/chem.202001660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The fundamental concept of effective molarity is observed in a variety of biological processes, such as protein compartmentalization within organelles, membrane localization and signaling paths. To control molecular encountering and promote effective interactions, nature places biomolecules in specific sites inside the cell in order to generate a high, localized concentration different from the bulk concentration. Inspired by this mechanism, scientists have artificially recreated in the lab the same strategy to actuate and control artificial DNA-based functional systems. Here, it is discussed how harnessing effective molarity has led to the development of a number of proximity-induced strategies, with applications ranging from DNA-templated organic chemistry and catalysis, to biosensing and protein-supported DNA assembly.
Collapse
Affiliation(s)
- Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Bertucci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Tania Patiño
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Lorena Baranda
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
8
|
Surin M, Ulrich S. From Interaction to Function in DNA-Templated Supramolecular Self-Assemblies. ChemistryOpen 2020; 9:480-498. [PMID: 32328404 PMCID: PMC7175023 DOI: 10.1002/open.202000013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.
Collapse
Affiliation(s)
- Mathieu Surin
- Laboratory for Chemistry of Novel MaterialsCenter of Innovation and Research in Materials and Polymers (CIRMAP)University of Mons-UMONS7000MonsBelgium
| | | |
Collapse
|
9
|
Angerani S, Winssinger N. Visible Light Photoredox Catalysis Using Ruthenium Complexes in Chemical Biology. Chemistry 2019; 25:6661-6672. [PMID: 30689234 DOI: 10.1002/chem.201806024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/24/2022]
Abstract
The development of bioorthogonal reactions have had a transformative impact in chemical biology and the quest to expand this toolbox continues. Herein we review recent applications of ruthenium-catalyzed photoredox reactions used in chemical biology.
Collapse
Affiliation(s)
- Simona Angerani
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
10
|
Anzola M, Winssinger N. Turn On of a Ruthenium(II) Photocatalyst by DNA-Templated Ligation. Chemistry 2018; 25:334-342. [PMID: 30451338 DOI: 10.1002/chem.201804283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 01/05/2023]
Abstract
Here, the synthesis of a RuII photocatalyst by light-directed oligonucleotide-templated ligation reaction is described. The photocatalyst was found to have tremendous potential for signal amplification with >15000 turnovers measured in 9 hours. A templated reaction was used to turn on the activity of this ruthenium(II) photocatalyst in response to a specific DNA sequence. The photocatalysis of the ruthenium(II) complex was harnessed to uncage a new precipitating dye that is highly fluorescent and photostable in the solid state. This reaction was used to discriminate between different DNA analytes based on localization of the precipitate as well as for in cellulo miRNA detection. Finally, a bipyridine ligand functionalized with two different peptide nucleic acid (PNA) sequences was shown to enable template-mediated ligation (turn on of the ruthenium(II) photocatalysis) and recruitment of substrate for templated photocatalysis.
Collapse
Affiliation(s)
- Marcello Anzola
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 30 Quai Ernest-Ansermet, 1205, Geneva, Switzerland
| |
Collapse
|
11
|
Bahal R, Manna A, Hsieh WC, Thadke SA, Sureshkumar G, Ly DH. RNA-Templated Concatenation of Triplet Nucleic-Acid Probe. Chembiochem 2018; 19:674-678. [PMID: 29323790 DOI: 10.1002/cbic.201700574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Indexed: 01/21/2023]
Abstract
Template-directed synthesis offers several distinct benefits over conventional laboratory creation, including unsurpassed reaction rate and selectivity. Although it is central to many biological processes, such an approach has rarely been applied to the in situ synthesis and recognition of biomedically relevant target. Towards this goal, we report the development of a three-codon nucleic-acid probe containing a C-terminal thioester group and an N-terminal cysteine that is capable of undergoing template-directed oligomerization in the presence of an RNA target and self-deactivation in its absence. The work has implications for the development of millamolecular nucleic-acid probes for targeting RNA-repeated expansions associated with myotonic dystrophy type 1 and other related neuromuscular and neurodegenerative disorders.
Collapse
Affiliation(s)
- Raman Bahal
- School of Pharmacy, University of Connecticut, 69 N. Eagleville Road, Storrs, CT, 06269, USA
| | - Arunava Manna
- Department of Chemistry, Institute for Biomolecular Design and Discovery (IBD), and CNAST, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Wei-Che Hsieh
- Department of Chemistry, Institute for Biomolecular Design and Discovery (IBD), and CNAST, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Shivaji A Thadke
- Department of Chemistry, Institute for Biomolecular Design and Discovery (IBD), and CNAST, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Gopalsamy Sureshkumar
- Department of Chemistry, Institute for Biomolecular Design and Discovery (IBD), and CNAST, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Danith H Ly
- Department of Chemistry, Institute for Biomolecular Design and Discovery (IBD), and CNAST, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
12
|
Werther P, Möhler JS, Wombacher R. A Bifunctional Fluorogenic Rhodamine Probe for Proximity-Induced Bioorthogonal Chemistry. Chemistry 2017; 23:18216-18224. [DOI: 10.1002/chem.201703607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Philipp Werther
- Institut für Pharmazie und Molekulare Biotechnologie; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Jasper S. Möhler
- Institut für Pharmazie und Molekulare Biotechnologie; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Richard Wombacher
- Institut für Pharmazie und Molekulare Biotechnologie; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| |
Collapse
|
13
|
Abstract
Nucleic acid directed bioorthogonal reactions offer the fascinating opportunity to unveil and redirect a plethora of intracellular mechanisms. Nano- to picomolar amounts of specific RNA molecules serve as templates and catalyze the selective formation of molecules that 1) exert biological effects, or 2) provide measurable signals for RNA detection. Turnover of reactants on the template is a valuable asset when concentrations of RNA templates are low. The idea is to use RNA-templated reactions to fully control the biodistribution of drugs and to push the detection limits of DNA or RNA analytes to extraordinary sensitivities. Herein we review recent and instructive examples of conditional synthesis or release of compounds for in cellulo protein interference and intracellular nucleic acid imaging.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| | - Oliver Seitz
- Department of ChemistryHumboldt University BerlinBrook-Taylor Strasse 212489BerlinGermany
| |
Collapse
|
14
|
Al Sulaiman D, Chang JYH, Ladame S. Subnanomolar Detection of Oligonucleotides through Templated Fluorogenic Reaction in Hydrogels: Controlling Diffusion to Improve Sensitivity. Angew Chem Int Ed Engl 2017; 56:5247-5251. [PMID: 28382640 PMCID: PMC5502887 DOI: 10.1002/anie.201701356] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Oligonucleotide-templated reactions are valuable tools for nucleic acid sensing both in vitro and in vivo. They are typically carried out under conditions that make any reaction in the absence of template highly unfavorable (most commonly by using a low concentration of reactants), which has a negative impact on the detection sensitivity. Herein, we report a novel platform for fluorogenic oligonucleotide-templated reactions between peptide nucleic acid probes embedded within permeable agarose and alginate hydrogels. We demonstrate that under conditions of restricted mobility (that is, limited diffusion), non-specific interactions between probes are prevented, thus leading to lower background signals. When applied to nucleic acid sensing, this accounts for a significant increase in sensitivity (that is, lower limit of detection). Optical nucleic acid sensors based on fluorogenic peptide nucleic acid probes embedded in permeable, physically crosslinked, alginate beads were also engineered and proved capable of detecting DNA concentrations as low as 100 pm.
Collapse
Affiliation(s)
- Dana Al Sulaiman
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Jason Y H Chang
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
15
|
Al Sulaiman D, Chang JYH, Ladame S. Subnanomolar Detection of Oligonucleotides through Templated Fluorogenic Reaction in Hydrogels: Controlling Diffusion to Improve Sensitivity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dana Al Sulaiman
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Jason Y. H. Chang
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Sylvain Ladame
- Department of Bioengineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
16
|
Di Pisa M, Hauser A, Seitz O. Maximizing Output in RNA-Programmed Peptidyl-Transfer Reactions. Chembiochem 2017; 18:872-879. [PMID: 28106939 DOI: 10.1002/cbic.201600687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 01/10/2023]
Abstract
A chemical reaction that is triggered by a specific RNA molecule might provide opportunities for the design of artificial feedback loops. We envision a peptidyl transfer reaction in which mRNA encoding an antiapoptotic protein would instruct the synthesis of apoptosis-inducing peptides. In this study, we used the RNA-programmed synthesis of a 16-mer peptide derived from the BH3 domain of the protein Bak, which inhibits the antiapoptotic protein Bcl-xL . The reaction involves the transfer of a thioester-linked donor peptide fragment from one PNA conjugate to an acceptor peptide-PNA conjugate. We asked two key questions. What are the chemical requirements that allow RNA-templated synthesis of a 16-mer peptide to proceed at lower (nanomolar) concentrations of RNA, that is, the concentration range found in cancer cells? Will such reactions provide sufficient amounts of peptide product and sufficient affinity to interfere with the targeted protein-protein interaction? Perhaps surprisingly, the lengths of the peptides involved in peptidyl transfer chemistry have little effect on the achievable rate enhancements. However, the nature of the thioester C terminus, the distance between the targeted template annealing sites, and template affinity play important roles. The investigation revealed guidelines for the reaction design for peptidyl transfer with low amounts (1-10 nm) of RNA, yet still provide sufficient product to antagonize a protein-protein interaction.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Department of Chemistry, Humboldt Universität zu Berlin, Brook Taylor Strasse 2, 12849, Berlin, Germany
| | - Anett Hauser
- Department of Chemistry, Humboldt Universität zu Berlin, Brook Taylor Strasse 2, 12849, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt Universität zu Berlin, Brook Taylor Strasse 2, 12849, Berlin, Germany
| |
Collapse
|
17
|
Yang H, Seela F. "Bis-Click" Ligation of DNA: Template-Controlled Assembly, Circularisation and Functionalisation with Bifunctional and Trifunctional Azides. Chemistry 2017; 23:3375-3385. [PMID: 27869337 DOI: 10.1002/chem.201604857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Indexed: 12/14/2022]
Abstract
Ligation and circularisation of oligonucleotides containing terminal triple bonds was performed with bifunctional or trifunctional azides. Both reactions are high yielding. Template-assisted bis-click ligation of two individual non-complementary oligonucleotide strands was accomplished to yield heterodimers exclusively. In this context, the template fulfils two functions: it accelerates the ligation reaction and controls product assembly (heterodimer vs. homodimer formation). Intermolecular bis-click circularisation of one oligonucleotide strand took place without template assistance. For construction of oligonucleotides with terminal triple bonds in the nucleobase side chain, 7- or 5-functionalised 7-deaza-dA and dU residues were used. These oligonucleotides are directly accessible by solid-phase synthesis. When trifunctional azides were employed instead of bifunctional linkers, functionalisation of the remaining azido group was performed with small molecules such as 1-ethynyl pyrene, biotin propargyl amide or with ethynylated oligonucleotides. By this means, branched DNA was constructed.
Collapse
Affiliation(s)
- Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
18
|
Fang GM, Seitz O. Bivalent Display of Dicysteine on Peptide Nucleic Acids for Homogenous DNA/RNA Detection through in Situ Fluorescence Labelling. Chembiochem 2016; 18:189-194. [PMID: 27883258 DOI: 10.1002/cbic.201600623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/06/2023]
Abstract
Fluorogenic probes that signal the presence of specific DNA or RNA sequences are key enabling tools for molecular disease diagnosis and imaging studies. Usually, at least one fluorophore is attached through covalent bonding to an oligonucleotide probe. However, the additional conjugation step increases costs. Here we introduce a method that avoids the requirement for the preparation of fluorescence-labelled oligonucleotides and provides the opportunity to alter the fluorogenic reporter dye without resynthesis. The method is based on adjacent hybridization of two dicysteine-containing peptide nucleic acid (PNA) probes to form a bipartite tetracysteine motif that binds profluorescent bisarsenical dyes such as FIAsH, ReAsH or CrAsH. Binding is accompanied by strong increases in fluorescence emission (with response factors of up to 80-fold and high brightness up to 50 mL mol-1 cm-1 ). The detection system provides sub-nanomolar limits of detection and allows discrimination of single nucleotide variations through more than 20-fold changes in fluorescence intensity. To demonstrate its usefulness, the FIAsH-based readout of the bivalent CysCys-PNA display was interfaced with a rolling-circle amplification (RCA) assay used to detect disease-associated microRNA let-7a.
Collapse
Affiliation(s)
- Ge-Min Fang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
19
|
Machida T, Dutt S, Winssinger N. Allosterically Regulated Phosphatase Activity from Peptide-PNA Conjugates Folded Through Hybridization. Angew Chem Int Ed Engl 2016; 55:8595-8. [PMID: 27320214 DOI: 10.1002/anie.201602751] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/10/2016] [Indexed: 01/17/2023]
Abstract
The importance of spatial organization in short peptide catalysts is well recognized. We synthesized and screened a library of peptides flanked by peptide nucleic acids (PNAs) such that the peptide would be constrained in a hairpin loop upon hybridization. A screen for phosphatase activity led to the discovery of a catalyst with >25-fold rate acceleration over the linear peptide. We demonstrated that the hybridization-enforced folding of the peptide is necessary for activity, and designed a catalyst that is allosterically controlled using a complementary PNA sequence.
Collapse
Affiliation(s)
- Takuya Machida
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Som Dutt
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva, Switzerland.
| |
Collapse
|
20
|
Machida T, Dutt S, Winssinger N. Allosterically Regulated Phosphatase Activity from Peptide–PNA Conjugates Folded Through Hybridization. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Takuya Machida
- Department of Organic Chemistry, NCCR Chemical Biology University of Geneva Quai Ernest Ansermet 30 1211 Geneva Switzerland
| | - Som Dutt
- Department of Organic Chemistry, NCCR Chemical Biology University of Geneva Quai Ernest Ansermet 30 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology University of Geneva Quai Ernest Ansermet 30 1211 Geneva Switzerland
| |
Collapse
|
21
|
De Stefano M, Vesterager Gothelf K. Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Double-Crossover Tiles. Chembiochem 2016; 17:1122-6. [PMID: 26994867 DOI: 10.1002/cbic.201600076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 02/03/2023]
Abstract
Designed nanostructures formed by self-assembly of multiple DNA strands suffer from low stability at elevated temperature and under other denaturing conditions. Here, we propose a method for covalent coupling of DNA strands in such structures by the formation of disulfide bonds; this allows disassembly of the structure under reducing conditions. The dynamic chemistry of disulfides and thiols was applied to crosslink DNA strands with terminal disulfide modifications. The formation of disulfide-linked DNA duplexes consisting of three strands is demonstrated, as well as a more-complex DNA double-crossover tile. All the strands in the fully disulfide-linked structures are covalently and geometrically interlocked, and it is demonstrated that the structures are stable under heating and in the presence of denaturants. Such a reversible system can be exploited in applications where higher DNA stability is needed only temporarily, such as delivery of cargoes to cells by DNA nanostructures.
Collapse
Affiliation(s)
- Mattia De Stefano
- Danish National Research Foundation, Center for DNA Nanotechnology, Department of Chemistry and iNANO, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kurt Vesterager Gothelf
- Danish National Research Foundation, Center for DNA Nanotechnology, Department of Chemistry and iNANO, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
22
|
DNA-Encoded Dynamic Combinatorial Chemical Libraries. Angew Chem Int Ed Engl 2015; 54:7924-8. [DOI: 10.1002/anie.201501775] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/21/2015] [Indexed: 12/20/2022]
|
23
|
Reddavide FV, Lin W, Lehnert S, Zhang Y. DNA-Encoded Dynamic Combinatorial Chemical Libraries. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501775] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Brauckhoff N, Hahne G, Yeh JTH, Grossmann TN. Protein-vermittelte Peptidverknüpfung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Brauckhoff N, Hahne G, Yeh JTH, Grossmann TN. Protein-Templated Peptide Ligation. Angew Chem Int Ed Engl 2014; 53:4337-40. [DOI: 10.1002/anie.201400681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Indexed: 12/13/2022]
|
26
|
Roloff A, Seitz O. Reducing product inhibition in nucleic acid-templated ligation reactions: DNA-templated cycligation. Chembiochem 2013; 14:2322-8. [PMID: 24243697 DOI: 10.1002/cbic.201300516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Indexed: 01/19/2023]
Abstract
Programmable interactions allow nucleic acid molecules to template chemical reactions by increasing the effective molarities of appended reactive groups. DNA/RNA-triggered reactions can proceed, in principle, with turnover in the template. The amplification provided by the formation of many product molecules per template is a valuable asset when the availability of the DNA or RNA target is limited. However, turnover is usually impeded by reaction products that block access to the template. Product inhibition is most severe in ligation reactions, where products after ligation have dramatically increased template affinities. We introduce a potentially generic approach to reduce product inhibition in nucleic acid-programmed ligation reactions. A DNA-triggered ligation-cyclization sequence ("cycligation") of bifunctional peptide nucleic acid (PNA) conjugates affords cyclic ligation products. Melting experiments revealed that product cyclization is accompanied by a pronounced decrease in template affinity compared to linear ligation products. The reaction system relies upon haloacetylated PNA-thioesters and isocysteinyl-PNA-cysteine conjugates, which were ligated on a DNA template according to a native chemical ligation mechanism. Dissociation of the resulting linear product-template duplex (induced by, for example, thermal cycling) enabled product cyclization through sulfur-halide substitution. Both ligation and cyclization are fast reactions (ligation: 86 % yield after 20 min, cyclization: quantitative after 5 min). Under thermocycling conditions, the DNA template was able to trigger the formation of new product molecules when fresh reactants were added. Furthermore, cycligation produced 2-3 times more product than a conventional ligation reaction with substoichiometric template loads (0.25-0.01 equiv). We believe that cyclization of products from DNA-templated reactions could ultimately afford systems that completely overcome product inhibition.
Collapse
Affiliation(s)
- Alexander Roloff
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489-Berlin (Germany)
| | | |
Collapse
|
27
|
Barluenga S, Winssinger N. Picture Perfect: DNA-Templated Photoaffinity Labeling. Chembiochem 2013; 14:1927-8. [DOI: 10.1002/cbic.201300416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Indexed: 12/18/2022]
|