1
|
Carvalho DS, da Silva DGB, Hallwass F, Navarro-Vázquez A. An Acrylonitrile-Based Copolymer Gel as an NMR Alignment Medium for Extraction of Residual Dipolar Couplings of Small Molecules in Aqueous Solution. Chempluschem 2023; 88:e202200446. [PMID: 36782376 DOI: 10.1002/cplu.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Indexed: 01/24/2023]
Abstract
An NMR weakly-aligning polymer gel has been prepared by copolymerization of acrylonitrile and 2-acrylamide-2-methyl-1-propanesulfonic acid in the presence of 1,4-butanediol diacrylate as a cross-linker. The polymer readily swells in water in a large range of temperatures, although the swelling ratio is decreased in saline solutions. The swollen gel can be mechanically compressed, in a reversible way, generating anisotropy, as easily shown in 2 H NMR experiments, and allowing measurement of 1 DCH residual dipolar couplings (RDCs) through F1-coupled HSQC experiments. The performance of this gel as a NMR alignment medium was evaluated in several water-soluble organic molecules and, while it provided RDCs of proper size for sucrose and even such as small molecule as 5-norbornen-2-ol, in the case of azidothymidine and cefuroxime sodium salt the strong interaction of these molecules with the gel prevented successful extraction of the RDCs.
Collapse
Affiliation(s)
- Daiane S Carvalho
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitria, CEP, 50.740-540, Recife, PE, Brazil
| | - Danilo G B da Silva
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitria, CEP, 50.740-540, Recife, PE, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitria, CEP, 50.740-540, Recife, PE, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitria, CEP, 50.740-540, Recife, PE, Brazil
| |
Collapse
|
2
|
Knoll K, Herold D, Hirschmann M, Thiele CM. A supramolecular and liquid crystalline water-based alignment medium based on azobenzene-substituted 1,3,5-benzenetricarboxamides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:563-571. [PMID: 35266585 DOI: 10.1002/mrc.5266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A supramolecular, lyotropic liquid crystalline alignment medium based on an azobenzene-containing 1,3,5-benzenetricarboxamide (BTA) building block is described and investigated. As we demonstrate, this water-based system is suitable for the investigation of various water-soluble analytes and allows for a scaling of alignment strength through variation of temperature. Additionally, alignment is shown to reversibly collapse above a certain temperature, yielding an isotropic solution. This collapse allows for isotropic reference measurements, which are typically needed in addition to those in an anisotropic environment, to be performed using the same sample just by varying the temperature. The medium described thus provides easy access to anisotropic NMR observables and simplifies structure elucidation techniques based thereon.
Collapse
Affiliation(s)
- Kevin Knoll
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dominik Herold
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Max Hirschmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
3
|
Lin Y, Li J, Qin SY, Sun H, Yang YL, Navarro-Vázquez A, Lei X. Programmable alignment media from self-assembled oligopeptide amphiphiles for the measurement of independent sets of residual dipolar couplings in organic solvents. Chem Sci 2022; 13:5838-5845. [PMID: 35685790 PMCID: PMC9131869 DOI: 10.1039/d2sc01057g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
NMR spectroscopy in anisotropic media has emerged as a powerful technique for the structural elucidation of organic molecules. Its application requires weak alignment of analytes by means of suitable alignment media. Although a number of alignment media, that are compatible with organic solvents, have been introduced in the last 20 years, acquiring a number of independent, non-linearly related sets of anisotropic NMR data from the same organic solvent system remains a formidable challenge, which is however crucial for the alignment simulations and deriving dynamic and structural information of organic molecules unambiguously. Herein, we introduce a programmable strategy to construct several distinct peptide-based alignment media by adjusting the amino acid sequence, which allows us to measure independent sets of residual dipolar couplings (RDCs) in a highly efficient and accurate manner. This study opens a new avenue for de novo structure determination of organic compounds without requiring prior structural information. We report a programmable strategy to construct multi-alignment media via peptide self-assembly for the measurement of independent sets of residual dipolar couplings (RDCs).![]()
Collapse
Affiliation(s)
- Yuexiao Lin
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Jiaqian Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Si-Yong Qin
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Group of Structural Chemistry and Computational Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Yan-Ling Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitária CEP 50740-540 Recife PE Brazil
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central University for Nationalities Wuhan 430074 China .,Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
4
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil-Silva LF, Gil RR. Cross-Linked Poly-4-Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021; 60:26314-26319. [PMID: 34609778 DOI: 10.1002/anie.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 11/07/2022]
Abstract
Determination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water. The conformational ensembles for each molecule with the best fit to the data are reported. Identification of minor conformers in water that cannot easily be determined by conventional NOE measurements will facilitate the use of RDC experiments in structure-based drug design.
Collapse
Affiliation(s)
- Kathleen A Farley
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Martin R M Koos
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Ye Che
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Reto Horst
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Chris Limberakis
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Justin Bellenger
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Ricardo Lira
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | | | - Roberto R Gil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Farley KA, Koos MRM, Che Y, Horst R, Limberakis C, Bellenger J, Lira R, Gil‐Silva LF, Gil RR. Cross‐Linked Poly‐4‐Acrylomorpholine: A Flexible and Reversibly Compressible Aligning Gel for Anisotropic NMR Analysis of Peptides and Small Molecules in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Martin R. M. Koos
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Ye Che
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Reto Horst
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Chris Limberakis
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Justin Bellenger
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | - Ricardo Lira
- Medicinal Sciences Pfizer Eastern Point Road Groton CT 06340 USA
| | | | - Roberto R. Gil
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
6
|
Sager E, Tzvetkova P, Gossert AD, Piechon P, Luy B. Determination of Configuration and Conformation of a Reserpine Derivative with Seven Stereogenic Centers Using Molecular Dynamics with RDC-Derived Tensorial Constraints*. Chemistry 2020; 26:14435-14444. [PMID: 32744785 PMCID: PMC7702126 DOI: 10.1002/chem.202002642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Indexed: 11/11/2022]
Abstract
NMR-based determination of the configuration of complex molecules containing many stereocenters is often not possible using traditional NOE data and coupling patterns. Making use of residual dipolar couplings (RDCs), we were able to determine the relative configuration of a natural product containing seven stereocenters, including a chiral amine lacking direct RDC data. To identify the correct relative configuration out of 32 possible ones, experimental RDCs were used in three different approaches for data interpretation: by fitting experimental data based singular value decomposition (SVD) using a single alignment tensor and either (i) a single conformer or (ii) multiple conformers, or alternatively (iii) using molecular dynamics simulations with tensorial orientational constraints (MDOC). Even though in all three approaches one and the same configuration could be selected and clear discrimination between possible configurations was achieved, the experimental data was not fully satisfied by the methods based on single tensor approaches. While these two approaches are faster, only MDOC is able to fully reproduce experimental results, as the obtained conformational ensemble adequately covers the conformational space necessary to describe the molecule with inherent flexibility.
Collapse
Affiliation(s)
- Emine Sager
- Institut für Organische ChemieKarlsruher Institut für Technologie (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
| | - Pavleta Tzvetkova
- Institut für Biologische Grenzflächen 4—Magnetische ResonanzKarlsruher Institut für Technologie (KIT)Postfach 364076021KarlsruheGermany
| | - Alvar D. Gossert
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
- Institut für Molekularbiologie und BiophysikETH Zürich8093ZürichSwitzerland
| | - Philippe Piechon
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
| | - Burkhard Luy
- Institut für Organische ChemieKarlsruher Institut für Technologie (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institut für Biologische Grenzflächen 4—Magnetische ResonanzKarlsruher Institut für Technologie (KIT)Postfach 364076021KarlsruheGermany
| |
Collapse
|
7
|
Qin S, Jiang Y, Sun H, Liu H, Zhang A, Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid‐Crystalline‐Based Medium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si‐Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Section of Structural Biology Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Han Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ai‐Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
8
|
Qin S, Jiang Y, Sun H, Liu H, Zhang A, Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid‐Crystalline‐Based Medium. Angew Chem Int Ed Engl 2020; 59:17097-17103. [DOI: 10.1002/anie.202007243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Si‐Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Section of Structural Biology Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Han Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ai‐Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
9
|
Knoll K, Leyendecker M, Thiele CM. l
‐Valine Derivatised 1,3,5‐Benzene‐Tricarboxamides as Building Blocks for a New Supramolecular Organogel‐Like Alignment Medium. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kevin Knoll
- Technische Universität Darmstadt Clemens‐Schöpf Institut für Organische Chemie und Biochemie Alarich‐Weiss‐Str. 4 64287 Darmstadt Germany
| | - Martin Leyendecker
- Technische Universität Darmstadt Clemens‐Schöpf Institut für Organische Chemie und Biochemie Alarich‐Weiss‐Str. 4 64287 Darmstadt Germany
| | - Christina M. Thiele
- Technische Universität Darmstadt Clemens‐Schöpf Institut für Organische Chemie und Biochemie Alarich‐Weiss‐Str. 4 64287 Darmstadt Germany
| |
Collapse
|
10
|
Lei X, Qiu F, Sun H, Bai L, Wang WX, Xiang W, Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew Chem Int Ed Engl 2017; 56:12857-12861. [PMID: 28834640 DOI: 10.1002/anie.201705123] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/11/2017] [Indexed: 11/10/2022]
Abstract
Residual dipolar coupling (RDC) is a powerful structural parameter for the determination of the constitution, conformation, and configuration of organic molecules. Herein, we report the first liquid crystal-based orienting medium that is compatible with MeOH, thus enabling RDC acquisitions of a wide range of intermediate to polar organic molecules. The liquid crystals were produced from self-assembled oligopeptide nanotubes (AAKLVFF), which are stable at very low concentrations. The presented alignment medium is highly homogeneous, and the size of RDCs can be scaled with the concentration of the peptide. To assess the accuracy of the RDC measurement by employing this new medium, seven bioactive natural products from different classes were chosen and analyzed. The straightforward preparation of the anisotropic alignment sample will offer a versatile and robust protocol for the routine RDC measurement of natural products.
Collapse
Affiliation(s)
- Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Feng Qiu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Liwen Bai
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, China
| | - Hongping Xiao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
11
|
Lei X, Qiu F, Sun H, Bai L, Wang WX, Xiang W, Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxiang Lei
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Feng Qiu
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Liwen Bai
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Wensheng Xiang
- School of Life Science; Northeast Agricultural University; Harbin Heilongjiang Province 150030 China
| | - Hongping Xiao
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| |
Collapse
|
12
|
Li GW, Cao JM, Zong W, Hu L, Hu ML, Lei X, Sun H, Tan RX. Helical Polyisocyanopeptides as Lyotropic Liquid Crystals for Measuring Residual Dipolar Couplings. Chemistry 2017; 23:7653-7656. [DOI: 10.1002/chem.201700539] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Gao-Wei Li
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P. R. China
| | - Jiang-Ming Cao
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P. R. China
| | - Wen Zong
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Li Hu
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Mao-Lin Hu
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Ren Xiang Tan
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
13
|
Troche‐Pesqueira E, Anklin C, Gil RR, Navarro‐Vázquez A. Computer‐Assisted 3D Structure Elucidation of Natural Products using Residual Dipolar Couplings. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Clemens Anklin
- Bruker BioSpin Corp. 15 Fortune Dr. Billerica MA 01821 USA
| | - Roberto R. Gil
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| | - Armando Navarro‐Vázquez
- Departamento de Química Fundamental, CCEN Universidade Federal de Pernambuco Brazil
- Departamento de Química Orgánica Universidade de Vigo 36310 Vigo Spain
| |
Collapse
|
14
|
Troche‐Pesqueira E, Anklin C, Gil RR, Navarro‐Vázquez A. Computer‐Assisted 3D Structure Elucidation of Natural Products using Residual Dipolar Couplings. Angew Chem Int Ed Engl 2017; 56:3660-3664. [DOI: 10.1002/anie.201612454] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/06/2022]
Affiliation(s)
| | - Clemens Anklin
- Bruker BioSpin Corp. 15 Fortune Dr. Billerica MA 01821 USA
| | - Roberto R. Gil
- Department of Chemistry Carnegie Mellon University 4400 Fifth Ave Pittsburgh PA 15213 USA
| | - Armando Navarro‐Vázquez
- Departamento de Química Fundamental, CCEN Universidade Federal de Pernambuco Brazil
- Departamento de Química Orgánica Universidade de Vigo 36310 Vigo Spain
| |
Collapse
|
15
|
Zong W, Li GW, Cao JM, Lei X, Hu ML, Sun H, Griesinger C, Tan RX. An Alignment Medium for Measuring Residual Dipolar Couplings in Pure DMSO: Liquid Crystals from Graphene Oxide Grafted with Polymer Brushes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen Zong
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P.R. China
| | - Gao-Wei Li
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P.R. China
| | - Jiang-Ming Cao
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P.R. China
| | - Xinxiang Lei
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P.R. China
| | - Mao-Lin Hu
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P.R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology; Max Planck Institute for Biophysical Chemistry; 37077 Göttingen Germany
| | - Ren Xiang Tan
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P.R. China
| |
Collapse
|
16
|
Zong W, Li GW, Cao JM, Lei X, Hu ML, Sun H, Griesinger C, Tan RX. An Alignment Medium for Measuring Residual Dipolar Couplings in Pure DMSO: Liquid Crystals from Graphene Oxide Grafted with Polymer Brushes. Angew Chem Int Ed Engl 2016; 55:3690-3. [DOI: 10.1002/anie.201511435] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Wen Zong
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P.R. China
| | - Gao-Wei Li
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P.R. China
| | - Jiang-Ming Cao
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P.R. China
| | - Xinxiang Lei
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P.R. China
| | - Mao-Lin Hu
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P.R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology; Max Planck Institute for Biophysical Chemistry; 37077 Göttingen Germany
| | - Ren Xiang Tan
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P.R. China
| |
Collapse
|
17
|
Gil-Silva LF, Santamaría-Fernández R, Navarro-Vázquez A, Gil RR. Collection of NMR Scalar and Residual Dipolar Couplings Using a Single Experiment. Chemistry 2015; 22:472-6. [DOI: 10.1002/chem.201503449] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Indexed: 11/11/2022]
|
18
|
Nath N, d'Auvergne EJ, Griesinger C. Long-Range Residual Dipolar Couplings: A Tool for Determining the Configuration of Small Molecules. Angew Chem Int Ed Engl 2015; 54:12706-10. [PMID: 26359945 DOI: 10.1002/anie.201504432] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Indexed: 11/07/2022]
Abstract
Together with NOE and J coupling, one-bond residual dipolar coupling (RDC), which reports on the three-dimensional orientation of an internuclear vector in the molecular frame, plays an important role in the conformation and configuration analysis of small molecules in solution by NMR spectroscopy. When the molecule has few C-H bonds, or too many bonds are in parallel, the available RDCs may not be sufficient to obtain the alignment tensor used for structure elucidation. Long-range RDCs that connect nuclei over multiple bonds are normally not parallel to the single bonds and therefore complement one-bond RDCs. Herein we present a method for extracting the long-range RDC of a chosen proton or group of protons to all remotely connected carbon atoms, including non-protonated carbon atoms. Alignment tensors fitted directly to the total long-range couplings (T=J+D) enabled straightforward analysis of both the long-range and one-bond RDCs for strychnine.
Collapse
Affiliation(s)
- Nilamoni Nath
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)
| | - Edward J d'Auvergne
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany)
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen (Germany).
| |
Collapse
|
19
|
Nath N, d'Auvergne EJ, Griesinger C. Long-Range Residual Dipolar Couplings: A Tool for Determining the Configuration of Small Molecules. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|