1
|
Wang H, Wu L, Zheng B, Du L, To W, Ko C, Phillips DL, Che C. C−H Activation by an Iron‐Nitrido Bis‐Pocket Porphyrin Species. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hai‐Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Bin Zheng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Wai‐Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Cheng‐Hoi Ko
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
2
|
Wang HX, Wu L, Zheng B, Du L, To WP, Ko CH, Phillips DL, Che CM. C-H Activation by an Iron-Nitrido Bis-Pocket Porphyrin Species. Angew Chem Int Ed Engl 2021; 60:4796-4803. [PMID: 33205509 DOI: 10.1002/anie.202014191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Indexed: 12/11/2022]
Abstract
High-valent iron-nitrido species are nitrogen analogues of iron-oxo species which are versatile reagents for C-H oxidation. Nonetheless, C-H activation by iron-nitrido species has been scarcely explored, as this is often hampered by their instability and short lifetime in solutions. Herein, the hydrogen atom transfer (HAT) reactivity of an Fe porphyrin nitrido species (2 c) toward C-H substrates was studied in solutions at room temperature, which was achieved by nanosecond laser flash photolysis (LFP) of its FeIII -azido precursor (1 c) supported by a bulky bis-pocket porphyrin ligand. C-H bonds with bond dissociation enthalpies (BDEs) of up to ≈84 kcal mol-1 could be activated, and the second-order rate constants (k2 ) are on the order of 102 -104 s-1 m-1 . The Fe-amido product formed after HAT could further release ammonia upon protonation.
Collapse
Affiliation(s)
- Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bin Zheng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Cheng-Hoi Ko
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
3
|
Wagner HE, Di Martino‐Fumo P, Boden P, Zimmer M, Klopper W, Breher F, Gerhards M. Structural Characterization and Lifetimes of Triple-Stranded Helical Coinage Metal Complexes: Synthesis, Spectroscopy and Quantum Chemical Calculations. Chemistry 2020; 26:10743-10751. [PMID: 32428347 PMCID: PMC7496093 DOI: 10.1002/chem.202001544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Indexed: 11/11/2022]
Abstract
This work reports on a series of polynuclear complexes containing a trinuclear Cu, Ag, or Au core in combination with the fac-isomer of the metalloligand [Ru(pypzH)3 ](PF6 )2 (pypzH=3-(pyridin-2-yl)pyrazole). These (in case of the Ag and Au containing species) newly synthesized compounds of the general formula [{Ru(pypz)3 }2 M3 ](PF6 ) (2: M=Cu; 3: M=Ag; 4: M=Au) contain triple-stranded helical structures in which two ruthenium moieties are connected by three N-M-N (M=Cu, Ag, Au) bridges. In order to obtain a detailed description of the structure both in the electronic ground and excited states, extensive spectroscopic and quantum chemical calculations are applied. The equilateral coinage metal core triangle in the electronic ground state of 2-4 is distorted in the triplet state. Furthermore, the analyses offer a detailed description of electronic excitations. By using time-resolved IR spectroscopy from the microsecond down to the nanosecond regime, both the vibrational spectra and the lifetime of the lowest lying electronically excited triplet state can be determined. The lifetimes of these almost only non-radiative triplet states of 2-4 show an unusual effect in a way that the Au-containing complex 4 has a lifetime which is by more than a factor of five longer than in case of the Cu complex 2. Thus, the coinage metals have a significant effect on the electronically excited state, which is localized on a pypz ligand coordinated to the Ru atom indicating an unusual cooperative effect between two moieties of the complex.
Collapse
Affiliation(s)
- Hanna E. Wagner
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Patrick Di Martino‐Fumo
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Pit Boden
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Manuel Zimmer
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Willem Klopper
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Markus Gerhards
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| |
Collapse
|
4
|
Zelenka J, Roithová J. Mechanistic Investigation of Photochemical Reactions by Mass Spectrometry. Chembiochem 2020; 21:2232-2240. [DOI: 10.1002/cbic.202000072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Zelenka
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and CatalysisInstitute for Molecules and MaterialsRadboud University Nijmegen Heyendaalseweg 135 6525 AJ Nijmegen (The Netherlands
| |
Collapse
|
5
|
Chang HC, Lin YH, Werlé C, Neese F, Lee WZ, Bill E, Ye S. Conversion of a Fleeting Open-Shell Iron Nitride into an Iron Nitrosyl. Angew Chem Int Ed Engl 2019; 58:17589-17593. [PMID: 31532866 PMCID: PMC6899486 DOI: 10.1002/anie.201908689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Indexed: 11/12/2022]
Abstract
Terminal metal nitrides have been proposed as key intermediates in a series of pivotal chemical transformations. However, exploring the chemical activity of transient tetragonal iron(V) nitrides is largely impeded by their facile dimerization in fluid solutions. Herein, in situ EPR and Mössbauer investigations are presented of unprecedented oxygenation of a paramagnetic iron(V) nitrido intermediate, [FeVN(cyclam‐ac)]+ (2, cyclam‐ac−=1,4,8,11‐tetraazacyclotetradecane‐1‐acetate anion), yielding an iron nitrosyl complex, [Fe(NO)(cyclam‐ac)]+ (3). Further theoretical studies suggest that during the reaction a closed‐shell singlet O atom is transferred to 2. Consequently, the N−O bond formation does not follow a radical coupling mechanism proposed for the N−N bond formation but is accomplished by three mutual electron‐transfer pathways between 2 and the O atom donor, thanks to the ambiphilic nature of 2.
Collapse
Affiliation(s)
- Hao-Ching Chang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Yen-Hao Lin
- Department of Chemistry, National Taiwan Normal University, 88, Ting-chou Rd. Sec. 4, 11677, Taipei, Taiwan
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, 88, Ting-chou Rd. Sec. 4, 11677, Taipei, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shi-Chuan 1st Rd., 807, Kaohsiung, Taiwan
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Chang H, Lin Y, Werlé C, Neese F, Lee W, Bill E, Ye S. Conversion of a Fleeting Open‐Shell Iron Nitride into an Iron Nitrosyl. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao‐Ching Chang
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Yen‐Hao Lin
- Department of ChemistryNational Taiwan Normal University 88, Ting-chou Rd. Sec. 4 11677 Taipei Taiwan
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Way‐Zen Lee
- Department of ChemistryNational Taiwan Normal University 88, Ting-chou Rd. Sec. 4 11677 Taipei Taiwan
- Department of Medicinal and Applied ChemistryKaohsiung Medical University 100, Shi-Chuan 1st Rd. 807 Kaohsiung Taiwan
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
7
|
Amirjalayer S, Martinez‐Cuezva A, Berna J, Woutersen S, Buma WJ. Photoinduced Pedalo-Type Motion in an Azodicarboxamide-Based Molecular Switch. Angew Chem Int Ed Engl 2018; 57:1792-1796. [PMID: 29139183 PMCID: PMC5814897 DOI: 10.1002/anie.201709666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/23/2017] [Indexed: 01/05/2023]
Abstract
Well-defined structural changes of molecular units that can be triggered by light are crucial for the development of photoactive functional materials. Herein, we report on a novel switch that has azodicarboxamide as its photo-triggerable element. Time-resolved UV-pump/IR probe spectroscopy in combination with quantum-chemical calculations shows that the azodicarboxamide functionality, in contrast to other azo-based chromophores, does not undergo trans-cis photoisomerization. Instead, a photoinduced pedalo-type motion occurs, which because of its volume-conserving properties enables the design of functional molecular systems with controllable motion in a confined space.
Collapse
Affiliation(s)
- Saeed Amirjalayer
- Physikalisches Institut and Center for Multiscale Theory and ComputationWestfälische Wilhelms-Universität MünsterWillhelm-Klemm-Strasse 1048149MünsterGermany
- Center for Nanotechnology (CeNTech)Heisenbergstrasse 1148149MünsterGermany
| | | | - Jose Berna
- Departamento de Química OrgánicaFacultad de QuímicaUniversidad de Murcia30100MurciaSpain
| | - Sander Woutersen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
8
|
Kaczmarek MA, Malhotra A, Balan GA, Timmins A, de Visser SP. Nitrogen Reduction to Ammonia on a Biomimetic Mononuclear Iron Centre: Insights into the Nitrogenase Enzyme. Chemistry 2017; 24:5293-5302. [PMID: 29165842 PMCID: PMC5915742 DOI: 10.1002/chem.201704688] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/05/2022]
Abstract
Nitrogenases catalyse nitrogen fixation to ammonia on a multinuclear Fe‐Mo centre, but their mechanism and particularly the order of proton and electron transfer processes that happen during the catalytic cycle is still unresolved. Recently, a unique biomimetic mononuclear iron model was developed using tris(phosphine)borate (TPB) ligands that was shown to convert N2 into NH3. Herein, we present a computational study on the [(TPB)FeN2]− complex and describe its conversion into ammonia through the addition of electrons and protons. In particular, we tested the consecutive proton transfer on only the distal nitrogen atom or alternated protonation of the distal/proximal nitrogen. It is found that the lowest energy pathway is consecutive addition of three protons to the same site, which forms ammonia and an iron‐nitrido complex. In addition, the proton transfer step of complexes with the metal in various oxidation and spin states were tested and show that the pKa values of biomimetic mononuclear nitrogenase intermediates vary little with iron oxidation states. As such, the model gives several possible NH3 formation pathways depending on the order of electron/proton transfer, and all should be physically accessible in the natural system. These results may have implications for enzymatic nitrogenases and give insight into the catalytic properties of mononuclear iron centres.
Collapse
Affiliation(s)
- Monika A Kaczmarek
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Abheek Malhotra
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - G Alex Balan
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Amy Timmins
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
9
|
Amirjalayer S, Martinez-Cuezva A, Berna J, Woutersen S, Buma WJ. Photoinduced Pedalo-Type Motion in an Azodicarboxamide-Based Molecular Switch. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Saeed Amirjalayer
- Physikalisches Institut and Center for Multiscale Theory and Computation; Westfälische Wilhelms-Universität Münster; Willhelm-Klemm-Strasse 10 48149 Münster Germany
- Center for Nanotechnology (CeNTech); Heisenbergstrasse 11 48149 Münster Germany
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica; Facultad de Química; Universidad de Murcia; 30100 Murcia Spain
| | - Jose Berna
- Departamento de Química Orgánica; Facultad de Química; Universidad de Murcia; 30100 Murcia Spain
| | - Sander Woutersen
- Van't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
10
|
Spin-State-Controlled Photodissociation of Iron(III) Azide to an Iron(V) Nitride Complex. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Andris E, Navrátil R, Jašík J, Sabenya G, Costas M, Srnec M, Roithová J. Spin-State-Controlled Photodissociation of Iron(III) Azide to an Iron(V) Nitride Complex. Angew Chem Int Ed Engl 2017; 56:14057-14060. [DOI: 10.1002/anie.201707420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Erik Andris
- Department of Organic Chemistry; Faculty of Science; Charles University; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry; Faculty of Science; Charles University; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Juraj Jašík
- Department of Organic Chemistry; Faculty of Science; Charles University; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Gerard Sabenya
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC); University of Girona; Campus Montilivi Girona 17071 Spain
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC); University of Girona; Campus Montilivi Girona 17071 Spain
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS, v. v. i.; Dolejškova 2155/3 18223 Prague 8 Czech Republic
| | - Jana Roithová
- Department of Organic Chemistry; Faculty of Science; Charles University; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| |
Collapse
|
12
|
Zimmer M, Dietrich F, Volz D, Bräse S, Gerhards M. Solid-State Step-Scan FTIR Spectroscopy of Binuclear Copper(I) Complexes. Chemphyschem 2017; 18:3023-3029. [DOI: 10.1002/cphc.201700753] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Manuel Zimmer
- Chemistry Department and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Strasse 52 67663 Kaiserslautern Germany
| | - Fabian Dietrich
- Chemistry Department and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Strasse 52 67663 Kaiserslautern Germany
| | - Daniel Volz
- CYNORA GmbH; Werner-von-Siemens-Strasse 2-6, Building 5110 76646 Bruchsal Germany
| | - Stefan Bräse
- Institute of Organic Chemistry; Karlsruhe Institute of Technology; Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institute of Toxicology and Genetics; Karlsruhe Institute of Technology; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Markus Gerhards
- Chemistry Department and Research Center Optimas; TU Kaiserslautern; Erwin-Schrödinger-Strasse 52 67663 Kaiserslautern Germany
| |
Collapse
|
13
|
Torres-Alacan J, Vöhringer P. Photolysis of a High-Spin Azidoiron(III) Complex Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy. Chemistry 2017; 23:6746-6751. [DOI: 10.1002/chem.201700960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Joel Torres-Alacan
- Institut für Physikalische und Theoretische Chemie; Rheinische Friedrich-Wilhelms-Universität; Wegelerstraße 12 53117 Bonn Germany
| | - Peter Vöhringer
- Institut für Physikalische und Theoretische Chemie; Rheinische Friedrich-Wilhelms-Universität; Wegelerstraße 12 53117 Bonn Germany
| |
Collapse
|
14
|
Torres-Alacan J, Lindner J, Vöhringer P. Probing the Primary Photochemical Processes of Octahedral Iron(V) Formation with Femtosecond Mid-infrared Spectroscopy. Chemphyschem 2015; 16:2289-93. [DOI: 10.1002/cphc.201500370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 11/08/2022]
|
15
|
Krahe O, Bill E, Neese F. Decay of Iron(V) Nitride Complexes By a NN Bond-Coupling Reaction in Solution: A Combined Spectroscopic and Theoretical Analysis. Angew Chem Int Ed Engl 2014; 53:8727-31. [DOI: 10.1002/anie.201403402] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 11/11/2022]
|
16
|
Krahe O, Bill E, Neese F. Abbau von Nitridoeisen(V)-Komplexen durch N-N-Kupplung in Lösung: spektroskopische und theoretische Analyse. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|