1
|
de Vries RH, Viel JH, Kuipers OP, Roelfes G. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) via Cu II -Catalyzed β-Borylation of Dehydroamino Acids. Angew Chem Int Ed Engl 2021; 60:3946-3950. [PMID: 33185967 PMCID: PMC7898795 DOI: 10.1002/anie.202011460] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/22/2022]
Abstract
We report the fast and selective chemical editing of ribosomally synthesized and post-translationally modified peptides (RiPPs) by β-borylation of dehydroalanine (Dha) residues. The thiopeptide thiostrepton was modified efficiently using CuII -catalysis under mild conditions and 1D/2D NMR of the purified product showed site-selective borylation of the terminal Dha residues. Using similar conditions, the thiopeptide nosiheptide, lanthipeptide nisin Z, and protein SUMO_G98Dha were also modified efficiently. Borylated thiostrepton showed an up to 84-fold increase in water solubility, and minimum inhibitory concentration (MIC) assays showed that antimicrobial activity was maintained in thiostrepton and nosiheptide. The introduced boronic-acid functionalities were shown to be valuable handles for chemical mutagenesis and in a reversible click reaction with triols for the pH-controlled labeling of RiPPs.
Collapse
Affiliation(s)
- Reinder H. de Vries
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Jakob H. Viel
- Department of Molecular GeneticsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Oscar P. Kuipers
- Department of Molecular GeneticsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 79747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
2
|
Vries RH, Viel JH, Kuipers OP, Roelfes G. Rapid and Selective Chemical Editing of Ribosomally Synthesized and Post‐Translationally Modified Peptides (RiPPs) via Cu
II
‐Catalyzed β‐Borylation of Dehydroamino Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Reinder H. Vries
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jakob H. Viel
- Department of Molecular Genetics Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
3
|
de Vries RH, Viel JH, Oudshoorn R, Kuipers OP, Roelfes G. Selective Modification of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) through Diels-Alder Cycloadditions on Dehydroalanine Residues. Chemistry 2019; 25:12698-12702. [PMID: 31361053 PMCID: PMC6790694 DOI: 10.1002/chem.201902907] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Indexed: 11/08/2022]
Abstract
We report the late‐stage chemical modification of ribosomally synthesized and post‐translationally modified peptides (RIPPs) by Diels–Alder cycloadditions to naturally occurring dehydroalanines. The tail region of the thiopeptide thiostrepton could be modified selectively and efficiently under microwave heating and transition‐metal‐free conditions. The Diels–Alder adducts were isolated and the different site‐ and endo/exo isomers were identified by 1D/2D 1H NMR. Via efficient modification of the thiopeptide nosiheptide and the lanthipeptide nisin Z the generality of the method was established. Minimum inhibitory concentration (MIC) assays of the purified thiostrepton Diels–Alder products against thiostrepton‐susceptible strains displayed high activities comparable to that of native thiostrepton. These Diels–Alder products were also subjected successfully to inverse‐electron‐demand Diels–Alder reactions with a variety of functionalized tetrazines, demonstrating the utility of this method for labeling of RiPPs.
Collapse
Affiliation(s)
- Reinder H de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Jakob H Viel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Ruben Oudshoorn
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
4
|
Abdel Monaim SAH, Somboro AM, El-Faham A, de la Torre BG, Albericio F. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide. ChemMedChem 2018; 14:24-51. [PMID: 30394699 DOI: 10.1002/cmdc.201800597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Indexed: 12/15/2022]
Abstract
In the last few decades, peptides have been victorious over small molecules as therapeutics due to their broad range of applications, high biological activity, and high specificity. However, the main challenges to overcome if peptides are to become effective drugs is their low oral bioavailability and instability under physiological conditions. Cyclic peptides play a vital role in this context because they show higher stability under physiological conditions, higher membrane permeability, and greater oral bioavailability than that of their corresponding linear analogues. In this regard, cyclic antimicrobial peptides (AMPs) have gained considerable attention in the field of novel antibiotic development. Bacterial strains produce cyclic AMPs through two pathways: ribosomal and nonribosomal. This review provides an overview of the chemical classification of cyclic AMPs isolated from bacteria, and provides a description of their biological activity and mode of action.
Collapse
Affiliation(s)
- Shimaa A H Abdel Monaim
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Anou M Somboro
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria, 12321, Egypt
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa.,Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
5
|
de Bruijn AD, Roelfes G. Chemical Modification of Dehydrated Amino Acids in Natural Antimicrobial Peptides by Photoredox Catalysis. Chemistry 2018; 24:11314-11318. [PMID: 29939448 PMCID: PMC6099298 DOI: 10.1002/chem.201803144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 12/29/2022]
Abstract
Dehydroalanine (Dha) and dehydrobutyrine (Dhb) are remarkably versatile non-canonical amino acids often found in antimicrobial peptides. This work presents the selective modification of Dha and Dhb in antimicrobial peptides through photocatalytic activation of organoborates under the influence of visible light. Ir(dF(CF3 )ppy)2 (dtbbpy)PF6 was used as a photoredox catalyst in aqueous solutions for the modification of thiostrepton and nisin. The mild conditions and high selectivity for the dehydrated residues show that photoredox catalysis is a promising tool for the modification of peptide-derived natural products.
Collapse
Affiliation(s)
- A. Dowine de Bruijn
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
6
|
de Bruijn AD, Roelfes G. Catalytic Modification of Dehydroalanine in Peptides and Proteins by Palladium-Mediated Cross-Coupling. Chemistry 2018; 24:12728-12733. [PMID: 29923249 PMCID: PMC6146911 DOI: 10.1002/chem.201802846] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/18/2018] [Indexed: 11/16/2022]
Abstract
Dehydroalanine (Dha) is a remarkably versatile non‐canonical amino acid often found in antimicrobial peptides. Herein, we present the catalytic modification of Dha by a palladium‐mediated cross‐coupling reaction. By using Pd(EDTA)(OAc)2 as water‐soluble catalyst, a variety of arylboronic acids was coupled to the dehydrated residues in proteins and peptides, such as Nisin. The cross‐coupling reaction gave both the Heck product, in which the sp2‐hybridisation of the α‐carbon is retained, as well as the conjugated addition product. The reaction can be performed under mild aqueous conditions, which makes this method an attractive addition to the palette of bio‐orthogonal catalytic methods.
Collapse
Affiliation(s)
- A Dowine de Bruijn
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
7
|
Kowalczyk R, Boratyński PJ. Stereoselective thia-Michael 1,4-Addition to Acyclic 2,4-Dienones and 2-En-4-ynones. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201501138] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Amaike K, Itami K, Yamaguchi J. Synthesis of Triarylpyridines in Thiopeptide Antibiotics by Using a C−H Arylation/Ring-Transformation Strategy. Chemistry 2016; 22:4384-8. [DOI: 10.1002/chem.201600351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kazuma Amaike
- Institute of Transformative Bio-Molecules (WPI-ITbM); Nagoya University; Chikusa Nagoya 464-8601 Japan
- Department of Chemistry; Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM); Nagoya University; Chikusa Nagoya 464-8601 Japan
- Department of Chemistry; Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
- JST, ERATO; Itami Molecular Nanocarbon Project; Chikusa Nagoya 464-8602 Japan
| | - Junichiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM); Nagoya University; Chikusa Nagoya 464-8601 Japan
- Department of Chemistry; Graduate School of Science; Nagoya University; Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
9
|
Wada H, Williams HEL, Moody CJ. Total Synthesis of the Posttranslationally Modified Polyazole Peptide Antibiotic Plantazolicin A. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Wada H, Williams HEL, Moody CJ. Total Synthesis of the Posttranslationally Modified Polyazole Peptide Antibiotic Plantazolicin A. Angew Chem Int Ed Engl 2015; 54:15147-51. [PMID: 26473502 DOI: 10.1002/anie.201507062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/06/2022]
Abstract
The power of rhodium-carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil-bacterium metabolite, comprises a linear array of 10 five-membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive posttranslational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax-causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR spectroscopic studies and molecular modeling reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin-resistant Staphylococcus aureus (MRSA).
Collapse
Affiliation(s)
- Hiroki Wada
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD (UK)
| | - Huw E L Williams
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD (UK)
| | | |
Collapse
|