1
|
Snoj J, Lapenta F, Jerala R. Preorganized cyclic modules facilitate the self-assembly of protein nanostructures. Chem Sci 2024; 15:3673-3686. [PMID: 38455016 PMCID: PMC10915844 DOI: 10.1039/d3sc06658d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
The rational design of supramolecular assemblies aims to generate complex systems based on the simple information encoded in the chemical structure. Programmable molecules such as nucleic acids and polypeptides are particularly suitable for designing diverse assemblies and shapes not found in nature. Here, we describe a strategy for assembling modular architectures based on structurally and covalently preorganized subunits. Cyclization through spontaneous self-splicing of split intein and coiled-coil dimer-based interactions of polypeptide chains provide structural constraints, facilitating the desired assembly. We demonstrate the implementation of a strategy based on the preorganization of the subunits by designing a two-chain coiled-coil protein origami (CCPO) assembly that adopts a tetrahedral topology only when one or both subunit chains are covalently cyclized. Employing this strategy, we further design a 109 kDa trimeric CCPO assembly comprising 24 CC-forming segments. In this case, intein cyclization was crucial for the assembly of a concave octahedral scaffold, a newly designed protein fold. The study highlights the importance of preorganization of building modules to facilitate the self-assembly of higher-order supramolecular structures.
Collapse
Affiliation(s)
- Jaka Snoj
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
- Interdisciplinary Doctoral Program in Biomedicine, University of Ljubljana Kongresni trg 12 SI-1000 Ljubljana Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana Slovenia
- EN-FIST Centre of Excellence Trg OF 13 SI-1000 Ljubljana Slovenia
| |
Collapse
|
2
|
Kang Y, Yeo M, Choi H, Jun H, Eom S, Park SG, Yoon H, Kim E, Kang S. Lactate oxidase/vSIRPα conjugates efficiently consume tumor-produced lactates and locally produce tumor-necrotic H 2O 2 to suppress tumor growth. Int J Biol Macromol 2023; 231:123577. [PMID: 36758763 DOI: 10.1016/j.ijbiomac.2023.123577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mirae Yeo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Haejin Yoon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunhee Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
3
|
Fan R, Hakanpää J, Elfving K, Taberman H, Linder MB, Aranko AS. Biomolecular Click Reactions Using a Minimal pH-Activated Catcher/Tag Pair for Producing Native-Sized Spider-Silk Proteins. Angew Chem Int Ed Engl 2023; 62:e202216371. [PMID: 36695475 DOI: 10.1002/anie.202216371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
A type of protein/peptide pair known as Catcher/Tag pair spontaneously forms an intermolecular isopeptide bond which can be applied for biomolecular click reactions. Covalent protein conjugation using Catcher/Tag pairs has turned out to be a valuable tool in biotechnology and biomedicines, but it is essential to increase the current toolbox of orthogonal Catcher/Tag pairs to expand the range of applications further, for example, for controlled multiple-fragment ligation. We report here the engineering of novel Catcher/Tag pairs for protein ligation, aided by a crystal structure of a minimal CnaB domain from Lactobacillus plantarum. We show that a newly engineered pair, called SilkCatcher/Tag enables efficient pH-inducible protein ligation in addition to being compatible with the widely used SpyCatcher/Tag pair. Finally, we demonstrate the use of the SilkCatcher/Tag pair in the production of native-sized highly repetitive spider-silk-like proteins with >90 % purity, which is not possible by traditional recombinant production methods.
Collapse
Affiliation(s)
- Ruxia Fan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - Johanna Hakanpää
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany.,Hamburg Unit c/o DESY, European Molecular Biology Laboratory (EMBL), Notkestrasse 85, 22603, Hamburg, Germany
| | - Karoliina Elfving
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - Helena Taberman
- Deutsches Elektronen Synchrotron (DESY), Photon Science, Notkestrasse 85, 22607, Hamburg, Germany
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| |
Collapse
|
4
|
Nandy S, Maranholkar VM, Crum M, Wasden K, Patil U, Goyal A, Vu B, Kourentzi K, Mo W, Henrickson A, Demeler B, Sen M, Willson RC. Expression and Characterization of Intein-Cyclized Trimer of Staphylococcus aureus Protein A Domain Z. Int J Mol Sci 2023; 24:1281. [PMID: 36674796 PMCID: PMC9865183 DOI: 10.3390/ijms24021281] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Staphylococcus aureus protein A (SpA) is an IgG Fc-binding virulence factor that is widely used in antibody purification and as a scaffold to develop affinity molecules. A cyclized SpA Z domain could offer exopeptidase resistance, reduced chromatographic ligand leaching after single-site endopeptidase cleavage, and enhanced IgG binding properties by preorganization, potentially reducing conformational entropy loss upon binding. In this work, a Z domain trimer (Z3) was cyclized using protein intein splicing. Interactions of cyclic and linear Z3 with human IgG1 were characterized by differential scanning fluorimetry (DSF), surface plasmon resonance (SPR), and isothermal titration calorimetry (ITC). DSF showed a 5 ℃ increase in IgG1 melting temperature when bound by each Z3 variant. SPR showed the dissociation constants of linear and cyclized Z3 with IgG1 to be 2.9 nM and 3.3 nM, respectively. ITC gave association enthalpies for linear and cyclic Z3 with IgG1 of -33.0 kcal/mol and -32.7 kcal/mol, and -T∆S of association 21.2 kcal/mol and 21.6 kcal/mol, respectively. The compact cyclic Z3 protein contains 2 functional binding sites and exhibits carboxypeptidase Y-resistance. The results suggest cyclization as a potential approach toward more stable SpA-based affinity ligands, and this analysis may advance our understanding of protein engineering for ligand and drug development.
Collapse
Affiliation(s)
- Suman Nandy
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Vijay M. Maranholkar
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Mary Crum
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Katherine Wasden
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Ujwal Patil
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Atul Goyal
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Binh Vu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Katerina Kourentzi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - William Mo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Richard C. Willson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
- Escuela de Medicina y Ciencias de Salud, Tecnológico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
5
|
Brune KD, Liekniņa I, Sutov G, Morris AR, Jovicevic D, Kalniņš G, Kazāks A, Kluga R, Kastaljana S, Zajakina A, Jansons J, Skrastiņa D, Spunde K, Cohen AA, Bjorkman PJ, Morris HR, Suna E, Tārs K. N-Terminal Modification of Gly-His-Tagged Proteins with Azidogluconolactone. Chembiochem 2021; 22:3199-3207. [PMID: 34520613 DOI: 10.1002/cbic.202100381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Indexed: 01/07/2023]
Abstract
Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective in vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pH 7.5 in 1 h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.
Collapse
Affiliation(s)
- Karl D Brune
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Ilva Liekniņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Grigorij Sutov
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania
| | - Alexander R Morris
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom.,Lab Group LT, UAB, Vilnius, Lithuania.,BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK
| | - Dejana Jovicevic
- Genie Biotech Ltd., Lido Medical Centre, St. Saviour, JE2 7LA, United Kingdom
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Andris Kazāks
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Rihards Kluga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Sabine Kastaljana
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Anna Zajakina
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Dace Skrastiņa
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Karīna Spunde
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Howard R Morris
- BioPharmaSpec Ltd., Suite 3.1, Lido Medical Centre, St. Saviour, JE2 7LA, UK.,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Ratsupites 1, 1067, Riga, Latvia.,University of Latvia, Jelgavas 1, 1004, Riga, Latvia
| |
Collapse
|
6
|
Haim A, Neubacher S, Grossmann TN. Protein Macrocyclization for Tertiary Structure Stabilization. Chembiochem 2021; 22:2672-2679. [PMID: 34060202 PMCID: PMC8453710 DOI: 10.1002/cbic.202100111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.
Collapse
Affiliation(s)
- Anissa Haim
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Incircular B.V.De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute of Molecular and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
7
|
Chen Y, Zhao Y, Zhou X, Liu N, Ming D, Zhu L, Jiang L. Improving the thermostability of trehalose synthase from Thermomonospora curvata by covalent cyclization using peptide tags and investigation of the underlying molecular mechanism. Int J Biol Macromol 2020; 168:13-21. [PMID: 33285196 DOI: 10.1016/j.ijbiomac.2020.11.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
One of the most desirable properties for industrial enzymes is high thermotolerance, which can reduce the amount of biocatalyst used and lower the production cost. Aiming to improve the thermotolerance of trehalose synthase (TreS, EC 5.4.99.16) from Thermomonospora curvata, four mutants (G78D, V289L, G322A, I323L) and four cyclized TreS variants fused using different Tag/Catcher pairs (SpyTag-TreS-SpyCatcher, SpyTag-TreS-KTag, SnoopTag-TreS-SnoopCatcher, SnoopTagJR-TreS-DogTag) were constructed. The results showed that cyclization led to a much larger increase of thermostability than that achieved via site-directed mutagenesis. The t1/2 of all four cyclized TreS variants at 55 °C increased 2- to 3- fold, while the analysis of kinetic and thermodynamic stability indicated that the T50 of the different cyclized TreS variants increased by between 7.5 °C and 15.5 °C. Molecular dynamics simulations showed that the Rg values of cyclized TreS decreased significantly, indicating that the protein maintained a tight tertiary structure at high temperatures, avoiding exposure of the hydrophobic core to the solvent. Cyclization using a Tag/Catcher pair is a simple and effective method for improving the thermotolerance of enzymes.
Collapse
Affiliation(s)
- Yao Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang Zhao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xue Zhou
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Nian Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
8
|
Wang Y, Tian J, Xiao Y, Wang Y, Sun H, Chang Y, Luo H. SpyTag/SpyCatcher cyclization enhances the thermostability and organic solvent tolerance of l-phenylalanine aldolase. Biotechnol Lett 2019; 41:987-994. [DOI: 10.1007/s10529-019-02689-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/05/2019] [Indexed: 11/24/2022]
|
9
|
Pelay‐Gimeno M, Bange T, Hennig S, Grossmann TN. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme. Angew Chem Int Ed Engl 2018; 57:11164-11170. [PMID: 29847004 PMCID: PMC6120448 DOI: 10.1002/anie.201804506] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. Thus far, macrocyclization approaches utilize a very limited structural diversity, which complicates the design process. Herein, we report an approach that enables cyclization through the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface-exposed cysteine residues, which are reacted with a triselectrophile, resulting in the in situ cyclization of the protein (INCYPRO). A bicyclic version of sortase A was designed that exhibits increased tolerance towards thermal as well as chemical denaturation, and proved to be efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain, resulting in up to 24 °C increased thermal stability.
Collapse
Affiliation(s)
- Marta Pelay‐Gimeno
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tanja Bange
- Department of Mechanistic Cell BiologyMax-Planck Institute of Molecular PhysiologyOtto-Hahn-Str. 1144227DortmundGermany
- Department for Systems ChronobiologyLMU MunichGoethe-Str. 3180336MunichGermany
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081 HZAmsterdamThe Netherlands
| |
Collapse
|
10
|
Mallin H, Ward TR. Streptavidin-Enzyme Linked Aggregates for the One-Step Assembly and Purification of Enzyme Cascades. ChemCatChem 2018. [DOI: 10.1002/cctc.201800162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hendrik Mallin
- Department of Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
11
|
Pelay-Gimeno M, Bange T, Hennig S, Grossmann TN. In Situ Cyclization of Native Proteins: Structure-Based Design of a Bicyclic Enzyme. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marta Pelay-Gimeno
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Tanja Bange
- Department of Mechanistic Cell Biology; Max-Planck Institute of Molecular Physiology; Otto-Hahn-Str. 11 44227 Dortmund Germany
- Department for Systems Chronobiology; LMU Munich; Goethe-Str. 31 80336 Munich Germany
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Tom N. Grossmann
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
12
|
Wang XW, Zhang WB. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| |
Collapse
|
13
|
Wang XW, Zhang WB. Protein Catenation Enhances Both the Stability and Activity of Folded Structural Domains. Angew Chem Int Ed Engl 2017; 56:13985-13989. [DOI: 10.1002/anie.201705194] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/07/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education; Center for Soft Matter Science and Engineering; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P. R. China
| |
Collapse
|
14
|
Gautier A, Rodriguez R. PSL Chemical Biology Symposia First 2016 Edition: When Chemistry and Biology Share the Language of Discovery. Chembiochem 2017; 18:883-887. [PMID: 28371105 DOI: 10.1002/cbic.201700117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 01/18/2023]
Abstract
Chemical biology, the science of understanding biological processes at the molecular level, has grown exponentially with the development of chemical strategies to manipulate and quantify biology with unprecedented precision. Recent advances presented at the Université Paris Sciences et Lettres symposium are discussed.
Collapse
Affiliation(s)
- Arnaud Gautier
- Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
| | | |
Collapse
|
15
|
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| |
Collapse
|
16
|
Wang XW, Zhang WB. Cellular Synthesis of Protein Catenanes. Angew Chem Int Ed Engl 2016; 55:3442-6. [DOI: 10.1002/anie.201511640] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao-Wei Wang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| | - Wen-Bin Zhang
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 P.R. China
| |
Collapse
|
17
|
Pierre B, Labonte JW, Xiong T, Aoraha E, Williams A, Shah V, Chau E, Helal KY, Gray JJ, Kim JR. Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein. Chembiochem 2015; 16:2392-402. [DOI: 10.1002/cbic.201500310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brennal Pierre
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Tina Xiong
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Edwin Aoraha
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Asher Williams
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Edward Chau
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Kazi Yasin Helal
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
18
|
Abstract
Protein-protein interactions are fundamental to many biological processes. Yet, the weak and transient noncovalent bonds that characterize most protein-protein interactions found in nature impose limits on many bioengineering experiments. Here, a new class of genetically encodable peptide-protein pairs--isopeptag-N/pilin-N, isopeptag/pilin-C, and SpyTag/SpyCatcher--that interact through autocatalytic intermolecular isopeptide bond formation is described. Reactions between peptide-protein pairs are specific, robust, orthogonal, and able to proceed under most biologically relevant conditions both in vitro and in vivo. As fusion constructs, they provide a handle on molecules of interest, both organic and inorganic, that can be grasped with an iron grip. Such stable interactions provide robust post-translational control over biological processes and open new opportunities in synthetic biology for engineering programmable and self-assembling protein nanoarchitectures.
Collapse
Affiliation(s)
- Bijan Zakeri
- Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|