1
|
Adler C, Krivtsov I, Mitoraj D, dos Santos‐Gómez L, García‐Granda S, Neumann C, Kund J, Kranz C, Mizaikoff B, Turchanin A, Beranek R. Sol-Gel Processing of Water-Soluble Carbon Nitride Enables High-Performance Photoanodes*. CHEMSUSCHEM 2021; 14:2170-2179. [PMID: 33576576 PMCID: PMC8248241 DOI: 10.1002/cssc.202100313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 05/05/2023]
Abstract
In spite of the enormous promise that polymeric carbon nitride (PCN) materials hold for various applications, the fabrication of high-quality, binder-free PCN films and electrodes has been a largely elusive goal to date. Here, we tackle this challenge by devising, for the first time, a water-based sol-gel approach that enables facile preparation of thin films based on poly(heptazine imide) (PHI), a polymer belonging to the PCN family. The sol-gel process capitalizes on the use of a water-soluble PHI precursor that allows formation of a non-covalent hydrogel. The hydrogel can be deposited on conductive substrates, resulting in formation of mechanically stable polymeric thin layers. The resulting photoanodes exhibit unprecedented photoelectrochemical (PEC) performance in alcohol reforming and highly selective (∼100 %) conversions with very high photocurrents (>0.25 mA cm-2 under 2 sun) down to <0 V vs. RHE. This enables even effective PEC operation under zero-bias conditions and represents the very first example of a 'soft matter'-based PEC system capable of bias-free photoreforming. The robust binder-free films derived from sol-gel processing of water-soluble PCN thus constitute a new paradigm for high-performance 'soft matter' photoelectrocatalytic systems and pave the way for further applications in which high-quality PCN films are required.
Collapse
Affiliation(s)
- Christiane Adler
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Igor Krivtsov
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Dariusz Mitoraj
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| | - Lucía dos Santos‐Gómez
- Department of Physical and Analytical ChemistryUniversity of Oviedo-CINN33006OviedoSpain
| | - Santiago García‐Granda
- Department of Physical and Analytical ChemistryUniversity of Oviedo-CINN33006OviedoSpain
| | - Christof Neumann
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaLessingstr. 1007743JenaGermany
- Center for Energy and Environmental Chemistry JenaCEEC Jena)Philosophenweg 7a07743JenaGermany
| | - Julian Kund
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Andrey Turchanin
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaLessingstr. 1007743JenaGermany
- Center for Energy and Environmental Chemistry JenaCEEC Jena)Philosophenweg 7a07743JenaGermany
| | - Radim Beranek
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
| |
Collapse
|
2
|
Lin H, Ma Z, Zhao J, Liu Y, Chen J, Wang J, Wu K, Jia H, Zhang X, Cao X, Wang X, Fu X, Long J. Electric-Field-Mediated Electron Tunneling of Supramolecular Naphthalimide Nanostructures for Biomimetic H 2 Production. Angew Chem Int Ed Engl 2021; 60:1235-1243. [PMID: 33026673 DOI: 10.1002/anie.202009267] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/25/2020] [Indexed: 11/11/2022]
Abstract
The design and synthesis of two semiconducting bis (4-ethynyl-bridging 1, 8-naphthalimide) bolaamphiphiles (BENI-COO- and BENI-NH3 + ) to fabricate supramolecular metal-insulator-semiconductor (MIS) nanostructures for biomimetic hydrogen evolution under visible light irradiation is presented. A H2 evolution rate of ca. 3.12 mmol g-1 ⋅h-1 and an apparent quantum efficiency (AQE) of ca. 1.63 % at 400 nm were achieved over the BENI-COO- -NH3 + -Ni MIS photosystem prepared by electrostatic self-assembly of BENI-COO- with the opposite-charged DuBois-Ni catalysts. The hot electrons of photoexcited BENI-COO- nanofibers were tunneled to the molecular Ni collectors across a salt bridge and an alkyl region of 2.2-2.5 nm length at a rate of 6.10×108 s-1 , which is five times larger than the BENI-NH3 + nanoribbons (1.17×108 s-1 ). The electric field benefited significantly the electron tunneling dynamics and compensated the charge-separated states insufficient in the BENI-COO- nanofibers.
Collapse
Affiliation(s)
- Huan Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zhiyun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yang Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jinquan Chen
- Department State Key Laboratory of Precision Spectroscopy, Zhongshan Campus, East China Normal University, Shanghai, 200062, P. R. China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P. R. China
| | - Huaping Jia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
3
|
Lin H, Ma Z, Zhao J, Liu Y, Chen J, Wang J, Wu K, Jia H, Zhang X, Cao X, Wang X, Fu X, Long J. Electric‐Field‐Mediated Electron Tunneling of Supramolecular Naphthalimide Nanostructures for Biomimetic H
2
Production. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huan Lin
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- College of Chemical Engineering Fuzhou University Fuzhou 350108 P. R. China
| | - Zhiyun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Yang Liu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jinquan Chen
- Department State Key Laboratory of Precision Spectroscopy Zhongshan Campus East China Normal University Shanghai 200062 P. R. China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 P. R. China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials Dalian Institute of Chemical Physics Chinese Academy of Science Dalian 116023 P. R. China
| | - Huaping Jia
- Department of Applied Physics The Hong Kong Polytechnic University Hong Kong 999077 P. R. China
| | - Xuming Zhang
- Department of Applied Physics The Hong Kong Polytechnic University Hong Kong 999077 P. R. China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| |
Collapse
|
4
|
Gross P, Höppe HA. Biuret-A Crucial Reaction Intermediate for Understanding Urea Pyrolysis To Form Carbon Nitrides: Crystal-Structure Elucidation and In Situ Diffractometric, Vibrational and Thermal Characterisation. Chemistry 2020; 26:14366-14376. [PMID: 32573843 PMCID: PMC7702053 DOI: 10.1002/chem.202001396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/06/2020] [Indexed: 11/19/2022]
Abstract
The crystal structure of biuret was elucidated by means of XRD analysis of single crystals grown through slow evaporation from a solution in ethanol. It crystallises in its own structure type in space group C2/c (a=15.4135(8) Å, b=6.6042(3) Å, c=9.3055(4) Å, Z=8). Biuret decomposition was studied in situ by means of temperature-programmed powder XRD and FTIR spectroscopy, to identify a co-crystalline biuret-cyanuric acid phase as a previously unrecognised reaction intermediate. Extensive thermogravimetric studies of varying crucible geometry, heating rate and initial sample mass reveal that the concentration of reactive gases at the interface to the condensed sample residues is a crucial parameter for the prevailing decomposition pathway. Taking these findings into consideration, a study on the optimisation of carbon nitride synthesis from urea on the gram scale, with standard solid-state laboratory techniques, is presented. Finally, a serendipitously encountered self-coating of the crucible inner walls by graphite during repeated synthetic cycles, which prove to be highly beneficial for the obtained yields, is reported.
Collapse
Affiliation(s)
- Peter Gross
- Lehrstuhl für FestkörperchemieUniversität AugsburgUniversitätsstr. 186159AugsburgGermany
| | - Henning A. Höppe
- Lehrstuhl für FestkörperchemieUniversität AugsburgUniversitätsstr. 186159AugsburgGermany
| |
Collapse
|
5
|
Coulson B, Lari L, Isaacs M, Raines DJ, Douthwaite RE, Duhme‐Klair A. Carbon Nitride as a Ligand: Selective Hydrogenation of Terminal Alkenes Using [(η
5
‐C
5
Me
5
)IrCl(g‐C
3
N
4
‐κ
2
N,N’
)]Cl. Chemistry 2020; 26:6862-6868. [DOI: 10.1002/chem.201905749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Ben Coulson
- Department of ChemistryUniversity of York York YO10 5DD UK
| | - Leonardo Lari
- Department of PhysicsUniversity of York York YO10 5DD UK
| | - Mark Isaacs
- HarwellXPS, R92 Research Complex at HarwellRutherford Appleton Laboratories Harwell, Didcot OX11 0QS UK
- Department of ChemistryUniversity College London 20 Gordon Street London WC1H 0AJ UK
| | | | | | | |
Collapse
|
6
|
Pan Z, Niu P, Liu M, Zhang G, Zhu Z, Wang X. Molecular Junctions on Polymeric Carbon Nitrides with Enhanced Photocatalytic Performance. CHEMSUSCHEM 2020; 13:888-892. [PMID: 31903727 DOI: 10.1002/cssc.201903172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Molecular catalysts (MC), namely homogeneous catalysts, have demonstrated great promise for efficient solar-to-chemical energy conversion in the hybrid system. However, the poor interfacial interaction between MC and photosensitizers (PS) impedes the efficient and fast interfacial electron transfer. To promote interfacial communication between PS and MC, a proof-of-concept method was developed for the combination of polymeric carbon nitride (PCN) PS with bipyridine cobalt [Co(bpy)3 2+ ] MC by covalent bonds, creating molecular junctions to promote interfacial electron transfer as confirmed by transient photoluminescence lifetime and electrochemical measurements. As a result, the binary photocatalyst [Co(bpy)3 2+ /BINA2 -CN] showed extensively enhanced photocatalytic activity such as H2 and CO2 reduction in comparison with the physical mixture of Co(bpy)3 2+ and PCN. This observation highlights the importance of construction of surface molecular junctions between PS and MC to accelerate the interfacial charge-carrier mobility and, consequently, improve the photocatalytic activity.
Collapse
Affiliation(s)
- Zhiming Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Pingping Niu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Minghui Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhanghangyu Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
7
|
Wang P, Li C, Wang M, Jin Y. Controlled Decoration of Divalent Nickel onto CdS/CdSe Core/Shell Quantum Dots to Boost Visible-Light-Induced Hydrogen Generation in Water. Chempluschem 2020; 83:1088-1096. [PMID: 31950710 DOI: 10.1002/cplu.201800389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 11/07/2022]
Abstract
The search for a low-cost, noble-metal-free cocatalyst to replace expensive Pt for hydrogen (H2 ) photogeneration in water has become a hot research topic, and among these, Ni-based cocatalysts are promising and highly desired. Developing new strategies and protocols to obtain Ni-based cocatalysts with high activity is therefore vitally important. Herein, we develop a new method to efficiently decorate divalent Ni onto pre-synthesized CdS/CdSe core/shell quantum dots (QDs). The concentration of Ni on the QDs can be easily tuned by varying the amount of the Ni precursor introduced during the synthesis. Further analyses reveal that Ni2+ can be strongly decorated onto QDs. Impressively, the Ni-decorated QDs displayed a significantly enhanced H2 photogeneration performance as compared to the two components prepared separately. Through the optimization of the Ni concentration on the QDs, the turnover frequency (TOF) with respect to Ni and quantum yield ( Φ H 2 ) at 520 nm for H2 evolution from water could reach 322 h-1 and 12.3 %, respectively. A possible mechanism has also been proposed and discussed in detail.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
| | - Chuanping Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Minmin Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
8
|
Synthesis of Ergosterol Peroxide Conjugates as Mitochondria Targeting Probes for Enhanced Anticancer Activity. Molecules 2019; 24:molecules24183307. [PMID: 31514398 PMCID: PMC6766909 DOI: 10.3390/molecules24183307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 01/19/2023] Open
Abstract
Inspired by the significant bioactivity of ergosterol peroxide, we designed and synthesized four fluorescent coumarin and ergosterol peroxide conjugates 8a–d through the combination of ergosterol peroxide with 7-N,N-diethylamino coumarins fluorophore. The cytotoxicity of synthesized conjugates against three human cancer cells (HepG2, SK-Hep1, and MCF-7) was evaluated. The results of fluorescent imaging showed that the synthesized conjugates 8a–d localized and enriched mainly in mitochondria, leading to significantly enhanced cytotoxicity over ergosterol peroxide. Furthermore, the results of biological functions of 8d showed that it could suppress cell colony formation, invasion, and migration; induce G2/M phase arrest of HepG2 cells, and increase the intracellular ROS level.
Collapse
|
9
|
Zhang J, Zhang W. Superior Photocatalytic Generation of H
2
in Water Medium Through Grafting a Cobalt Molecule Co‐Catalyst from Carbon Nitride Nanosheets. ChemCatChem 2019. [DOI: 10.1002/cctc.201900443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jun‐Shuai Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 381 Wushan Road Guangzhou 510640 P. R. China
| | - Wei‐De Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 381 Wushan Road Guangzhou 510640 P. R. China
| |
Collapse
|
10
|
Sun M, Li K, Zhang WD, Yu YX. Triamterene-Grafted Graphitic Carbon Nitride with Electronic Potential Redistribution for Efficient Photocatalytic Hydrogen Evolution. Chem Asian J 2018; 13:3073-3083. [DOI: 10.1002/asia.201801083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Miao Sun
- School of Chemistry and Chemical Engineering; South China University of Technology; 381 Wushan Road Guangzhou 510640 China
| | - Kui Li
- School of Chemistry and Chemical Engineering; South China University of Technology; 381 Wushan Road Guangzhou 510640 China
| | - Wei-De Zhang
- School of Chemistry and Chemical Engineering; South China University of Technology; 381 Wushan Road Guangzhou 510640 China
| | - Yu-Xiang Yu
- School of Chemistry and Chemical Engineering; South China University of Technology; 381 Wushan Road Guangzhou 510640 China
| |
Collapse
|
11
|
Nam DH, Zhang JZ, Andrei V, Kornienko N, Heidary N, Wagner A, Nakanishi K, Sokol KP, Slater B, Zebger I, Hofmann S, Fontecilla‐Camps JC, Park CB, Reisner E. Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dong Heon Nam
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Jenny Z. Zhang
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Virgil Andrei
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | | | - Nina Heidary
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Andreas Wagner
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Kenichi Nakanishi
- Department of EngineeringUniversity of Cambridge Cambridge CB3 0FA UK
| | | | - Barnaby Slater
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| | - Ingo Zebger
- Max Volmer Laboratorium für Biophysikalische Chemie, Sekretariat PC14Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Stephan Hofmann
- Department of EngineeringUniversity of Cambridge Cambridge CB3 0FA UK
| | - Juan C. Fontecilla‐Camps
- Metalloproteins UnitInstitut de Biologie StructuraleUniversité Grenoble AlpesCEA, CNRS 38044 Grenoble France
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Erwin Reisner
- Department of ChemistryUniversity of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
12
|
Nam DH, Zhang JZ, Andrei V, Kornienko N, Heidary N, Wagner A, Nakanishi K, Sokol KP, Slater B, Zebger I, Hofmann S, Fontecilla-Camps JC, Park CB, Reisner E. Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angew Chem Int Ed Engl 2018; 57:10595-10599. [PMID: 29888857 PMCID: PMC6100105 DOI: 10.1002/anie.201805027] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/05/2018] [Indexed: 01/10/2023]
Abstract
Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.
Collapse
Affiliation(s)
- Dong Heon Nam
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Jenny Z Zhang
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Virgil Andrei
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nikolay Kornienko
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nina Heidary
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Andreas Wagner
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kenichi Nakanishi
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Katarzyna P Sokol
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Barnaby Slater
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ingo Zebger
- Max Volmer Laboratorium für Biophysikalische Chemie, Sekretariat PC14, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Stephan Hofmann
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Juan C Fontecilla-Camps
- Metalloproteins Unit, Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| |
Collapse
|
13
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiokatalyse: Aktivierung von Redoxenzymen durch direkten oder indirekten Transfer photoinduzierter Elektronen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710070] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Su Keun Kuk
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| |
Collapse
|
14
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angew Chem Int Ed Engl 2018; 57:7958-7985. [PMID: 29194901 DOI: 10.1002/anie.201710070] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the "green" process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme's active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel-forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer-Villiger oxidation). This Review provides an overview of recent advances in light-driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
15
|
[FeFe]-Hydrogenase and its organic molecule mimics—Artificial and bioengineering application for hydrogenproduction. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Zhao Y, Antonietti M. Visible-Light-Irradiated Graphitic Carbon Nitride Photocatalyzed Diels-Alder Reactions with Dioxygen as Sustainable Mediator for Photoinduced Electrons. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703438] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yubao Zhao
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| | - Markus Antonietti
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
17
|
Zhao Y, Antonietti M. Visible-Light-Irradiated Graphitic Carbon Nitride Photocatalyzed Diels-Alder Reactions with Dioxygen as Sustainable Mediator for Photoinduced Electrons. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201703438] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yubao Zhao
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| | - Markus Antonietti
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
18
|
Yang Y, Wang S, Li Y, Wang J, Wang L. Strategies for Efficient Solar Water Splitting Using Carbon Nitride. Chem Asian J 2017; 12:1421-1434. [DOI: 10.1002/asia.201700540] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/25/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Yilong Yang
- Key Laboratory of Advanced Functional Materials; School of Materials Science and Engineering; Beijing University of Technology; Beijing 100124 China
- Nanomaterials Centre; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD 4072 Australia
| | - Songcan Wang
- Nanomaterials Centre; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD 4072 Australia
| | - Yongli Li
- Key Laboratory of Advanced Functional Materials; School of Materials Science and Engineering; Beijing University of Technology; Beijing 100124 China
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials; School of Materials Science and Engineering; Beijing University of Technology; Beijing 100124 China
| | - Lianzhou Wang
- Nanomaterials Centre; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St Lucia QLD 4072 Australia
| |
Collapse
|
19
|
Meyer AU, Lau VWH, König B, Lotsch BV. Photocatalytic Oxidation of Sulfinates to Vinyl Sulfones with Cyanamide-Functionalised Carbon Nitride. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601637] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andreas Uwe Meyer
- Institut für Organische Chemie; Universität Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Vincent Wing-hei Lau
- Max Planck Institute for Solid State Research; Heisenbergstrasse 1 70569 Stuttgart Germany
- Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstrasse 5-13, Haus D 81377 Munich Germany
| | - Burkhard König
- Institut für Organische Chemie; Universität Regensburg; Universitätsstrasse 31 93053 Regensburg Germany
| | - Bettina V. Lotsch
- Max Planck Institute for Solid State Research; Heisenbergstrasse 1 70569 Stuttgart Germany
- Department of Chemistry; Ludwig-Maximilians-Universität; Butenandtstrasse 5-13, Haus D 81377 Munich Germany
| |
Collapse
|
20
|
Covalent Attachment of the Water‐insoluble Ni(P
Cy
2
N
Phe
2
)
2
Electrocatalyst to Electrodes Showing Reversible Catalysis in Aqueous Solution. ELECTROANAL 2016. [DOI: 10.1002/elan.201600306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Martindale BCM, Joliat E, Bachmann C, Alberto R, Reisner E. Clean Donor Oxidation Enhances the H
2
Evolution Activity of a Carbon Quantum Dot–Molecular Catalyst Photosystem. Angew Chem Int Ed Engl 2016; 55:9402-6. [DOI: 10.1002/anie.201604355] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/20/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin C. M. Martindale
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Evelyne Joliat
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Cyril Bachmann
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Roger Alberto
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
22
|
Martindale BCM, Joliat E, Bachmann C, Alberto R, Reisner E. Clean Donor Oxidation Enhances the H
2
Evolution Activity of a Carbon Quantum Dot–Molecular Catalyst Photosystem. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604355] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Benjamin C. M. Martindale
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Evelyne Joliat
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Cyril Bachmann
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Roger Alberto
- Department of ChemistryUniversity of Zürich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
23
|
Lee CY, Park HS, Fontecilla-Camps JC, Reisner E. Photoelectrochemical H2 Evolution with a Hydrogenase Immobilized on a TiO2 -Protected Silicon Electrode. Angew Chem Int Ed Engl 2016; 55:5971-4. [PMID: 27061334 PMCID: PMC4981910 DOI: 10.1002/anie.201511822] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/25/2016] [Indexed: 11/07/2022]
Abstract
The combination of enzymes with semiconductors enables the photoelectrochemical characterization of electron‐transfer processes at highly active and well‐defined catalytic sites on a light‐harvesting electrode surface. Herein, we report the integration of a hydrogenase on a TiO2‐coated p‐Si photocathode for the photo‐reduction of protons to H2. The immobilized hydrogenase exhibits activity on Si attributable to a bifunctional TiO2 layer, which protects the Si electrode from oxidation and acts as a biocompatible support layer for the productive adsorption of the enzyme. The p‐Si|TiO2|hydrogenase photocathode displays visible‐light driven production of H2 at an energy‐storing, positive electrochemical potential and an essentially quantitative faradaic efficiency. We have thus established a widely applicable platform to wire redox enzymes in an active configuration on a p‐type semiconductor photocathode through the engineering of the enzyme–materials interface.
Collapse
Affiliation(s)
- Chong-Yong Lee
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute/AIIM Faculty, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Hyun S Park
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.,Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
| | - Juan C Fontecilla-Camps
- Metalloproteins Unit, Institut de Biologie Structurale, CEA, CNRS, Université Grenoble Alpes, 38044, Grenoble, France
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
24
|
Lee CY, Park HS, Fontecilla-Camps JC, Reisner E. Photoelectrochemical H 2 Evolution with a Hydrogenase Immobilized on a TiO 2-Protected Silicon Electrode. ACTA ACUST UNITED AC 2016; 128:6075-6078. [PMID: 27570301 PMCID: PMC4982046 DOI: 10.1002/ange.201511822] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/25/2016] [Indexed: 11/20/2022]
Abstract
The combination of enzymes with semiconductors enables the photoelectrochemical characterization of electron‐transfer processes at highly active and well‐defined catalytic sites on a light‐harvesting electrode surface. Herein, we report the integration of a hydrogenase on a TiO2‐coated p‐Si photocathode for the photo‐reduction of protons to H2. The immobilized hydrogenase exhibits activity on Si attributable to a bifunctional TiO2 layer, which protects the Si electrode from oxidation and acts as a biocompatible support layer for the productive adsorption of the enzyme. The p‐Si|TiO2|hydrogenase photocathode displays visible‐light driven production of H2 at an energy‐storing, positive electrochemical potential and an essentially quantitative faradaic efficiency. We have thus established a widely applicable platform to wire redox enzymes in an active configuration on a p‐type semiconductor photocathode through the engineering of the enzyme–materials interface.
Collapse
Affiliation(s)
- Chong-Yong Lee
- Department of Chemistry University of Cambridge Cambridge CB2 1EW UK; ARC Centre of Excellence for Electromaterials Science Intelligent Polymer Research Institute/AIIM Faculty Innovation Campus University of Wollongong Wollongong NSW 2522 Australia
| | - Hyun S Park
- Department of Chemistry University of Cambridge Cambridge CB2 1EW UK; Fuel Cell Research Center Korea Institute of Science and Technology (KIST) 02792 Seoul Republic of Korea
| | - Juan C Fontecilla-Camps
- Metalloproteins Unit, Institut de Biologie Structurale, CEA, CNRS Université Grenoble Alpes 38044 Grenoble France
| | - Erwin Reisner
- Department of Chemistry University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
25
|
Shao H, Muduli SK, Tran PD, Soo HS. Enhancing electrocatalytic hydrogen evolution by nickel salicylaldimine complexes with alkali metal cations in aqueous media. Chem Commun (Camb) 2016; 52:2948-51. [DOI: 10.1039/c5cc09456a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pendant, chelating ethers in the second coordination sphere of nickel salicylaldimine complexes bind alkali metals to promote hydrogen evolution electrocatalysis.
Collapse
Affiliation(s)
- Haiyan Shao
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Subas K. Muduli
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| | - Phong D. Tran
- Solar Fuels Laboratory
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
- Singapore
| |
Collapse
|
26
|
Zheng Y, Lin L, Wang B, Wang X. Polymeres graphitisches Kohlenstoffnitrid für die nachhaltige Photoredoxkatalyse. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501788] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Zheng Y, Lin L, Wang B, Wang X. Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. Angew Chem Int Ed Engl 2015; 54:12868-84. [DOI: 10.1002/anie.201501788] [Citation(s) in RCA: 1044] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Yun Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002 (China) http://wanglab.fzu.edu.cn
| | - Lihua Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002 (China) http://wanglab.fzu.edu.cn
| | - Bo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002 (China) http://wanglab.fzu.edu.cn
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002 (China) http://wanglab.fzu.edu.cn
| |
Collapse
|
28
|
Liu G, Wang T, Zhang H, Meng X, Hao D, Chang K, Li P, Kako T, Ye J. Nature-Inspired Environmental “Phosphorylation” Boosts Photocatalytic H2Production over Carbon Nitride Nanosheets under Visible-Light Irradiation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505802] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Liu G, Wang T, Zhang H, Meng X, Hao D, Chang K, Li P, Kako T, Ye J. Nature-Inspired Environmental “Phosphorylation” Boosts Photocatalytic H2Production over Carbon Nitride Nanosheets under Visible-Light Irradiation. Angew Chem Int Ed Engl 2015; 54:13561-5. [DOI: 10.1002/anie.201505802] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/15/2015] [Indexed: 11/10/2022]
|
30
|
Chen Y, Lin B, Yu W, Yang Y, Bashir SM, Wang H, Takanabe K, Idriss H, Basset JM. Surface Functionalization of g-C3N4: Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts. Chemistry 2015; 21:10290-5. [DOI: 10.1002/chem.201501742] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 12/18/2022]
|
31
|
Kochem A, O'Hagan M, Wiedner ES, van Gastel M. Combined Spectroscopic and Electrochemical Detection of a NiI⋅⋅⋅HN Bonding Interaction with Relevance to Electrocatalytic H2Production. Chemistry 2015; 21:10338-47. [DOI: 10.1002/chem.201500954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Indexed: 11/11/2022]
|
32
|
Abstract
A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe(‘S2Se2’)(CO)3] (H2‘S2Se2’=1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni(‘S2Se2’)] with [Fe(CO)3bda] (bda=benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe(‘S2Se2’)(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe(‘S2Se2’)(CO)3] with the previously reported thiolate analogue [NiFe(‘S4’)(CO)3] (H2‘S4’=H2xbsms=1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe(‘S2Se2’)(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe(‘S2Se2’)(CO)3] and [NiFe(‘S4’)(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution.
Collapse
Affiliation(s)
- Claire Wombwell
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK) E-mail: Homepage: http://www-reisner.ch.cam.ac.uk/
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK) E-mail: Homepage: http://www-reisner.ch.cam.ac.uk/
| |
Collapse
|
33
|
Liang Q, Huang ZH, Kang F, Yang QH. Facile Synthesis of Crystalline Polymeric Carbon Nitrides with an Enhanced Photocatalytic Performance under Visible Light. ChemCatChem 2015. [DOI: 10.1002/cctc.201500076] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Xu Y, Yin X, Huang Y, Du P, Zhang B. Hydrogen Production on a Hybrid Photocatalytic System Composed of Ultrathin CdS Nanosheets and a Molecular Nickel Complex. Chemistry 2015; 21:4571-5. [DOI: 10.1002/chem.201406642] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Indexed: 11/11/2022]
|