1
|
Mao Z, Liu L, Zhang Y, Yuan J. Efficient Synthesis of Phenylacetate and 2-Phenylethanol by Modular Cascade Biocatalysis. Chembiochem 2020; 21:2676-2679. [PMID: 32291886 DOI: 10.1002/cbic.202000182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Indexed: 11/12/2022]
Abstract
The green and sustainable synthesis of chemicals from renewable feedstocks by a biotransformation approach has gained increasing attention in recent years. In this work, we developed enzymatic cascades to efficiently convert l-phenylalanine into 2-phenylethanol (2-PE) and phenylacetic acid (PAA), l-tyrosine into tyrosol (p-hydroxyphenylethanol, p-HPE) and p-hydroxyphenylacetic acid (p-HPAA). The enzymatic cascade was cast into an aromatic aldehyde formation module, followed by an aldehyde reduction module, or aldehyde oxidation module, to achieve one-pot biotransformation by using recombinant Escherichia coli. Biotransformation of 50 mM l-Phe produced 6.76 g/L PAA with more than 99 % conversion and 5.95 g/L of 2-PE with 97 % conversion. The bioconversion efficiencies of p-HPAA and p-HPE from l-Tyr reached to 88 and 94 %, respectively. In addition, m-fluoro-phenylalanine was further employed as an unnatural aromatic amino acid substrate to obtain m-fluoro-phenylacetic acid; >96 % conversion was achieved. Our results thus demonstrated high-yielding and potential industrial synthesis of above aromatic compounds by one-pot cascade biocatalysis.
Collapse
Affiliation(s)
- Zuoxi Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Lijun Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, 361102, P. R. China
| |
Collapse
|
2
|
Brewster RC, Suitor JT, Bennett AW, Wallace S. Transition Metal‐Free Reduction of Activated Alkenes Using a Living Microorganism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Richard C. Brewster
- Institute for Quantitative Biology, Biochemistry and BiotechnologySchool of Biological SciencesUniversity of Edinburgh, King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| | - Jack T. Suitor
- Institute for Quantitative Biology, Biochemistry and BiotechnologySchool of Biological SciencesUniversity of Edinburgh, King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| | - Adam W. Bennett
- School of ChemistryUniversity of EdinburghJoseph Black Building David Brewster Road, King's Buildings Edinburgh EH9 3FJ UK
| | - Stephen Wallace
- Institute for Quantitative Biology, Biochemistry and BiotechnologySchool of Biological SciencesUniversity of Edinburgh, King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| |
Collapse
|
3
|
Brewster RC, Suitor JT, Bennett AW, Wallace S. Transition Metal-Free Reduction of Activated Alkenes Using a Living Microorganism. Angew Chem Int Ed Engl 2019; 58:12409-12414. [PMID: 31286626 DOI: 10.1002/anie.201903973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/26/2019] [Indexed: 01/07/2023]
Abstract
Microorganisms can be programmed to perform chemical synthesis via metabolic engineering. However, despite an increasing interest in the use of de novo metabolic pathways and designer whole-cells for small molecule synthesis, the inherent synthetic capabilities of native microorganisms remain underexplored. Herein, we report the use of unmodified E. coli BL21(DE3) cells for the reduction of keto-acrylic compounds and apply this whole-cell biotransformation to the synthesis of aminolevulinic acid from a lignin-derived feedstock. The reduction reaction is rapid, chemo-, and enantioselective, occurs under mild conditions (37 °C, aqueous media), and requires no toxic transition metals or external reductants. This study demonstrates the remarkable promiscuity of central metabolism in bacterial cells and how these processes can be leveraged for synthetic chemistry without the need for genetic manipulation.
Collapse
Affiliation(s)
- Richard C Brewster
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Jack T Suitor
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Adam W Bennett
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Stephen Wallace
- Institute for Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King's Buildings, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| |
Collapse
|
4
|
Zhou Y, Wu S, Mao J, Li Z. Bioproduction of Benzylamine from Renewable Feedstocks via a Nine-Step Artificial Enzyme Cascade and Engineered Metabolic Pathways. CHEMSUSCHEM 2018; 11:2221-2228. [PMID: 29766662 DOI: 10.1002/cssc.201800709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Production of chemicals from renewable feedstocks has been an important task for sustainable chemical industry. Although microbial fermentation has been widely employed to produce many biochemicals, it is still very challenging to access non-natural chemicals. Two methods (biotransformation and fermentation) have been developed for the first bio-derived synthesis of benzylamine, a commodity non-natural amine with broad applications. Firstly, a nine-step artificial enzyme cascade was designed by biocatalytic retrosynthetic analysis and engineered in recombinant E. coli LZ243. Biotransformation of l-phenylalanine (60 mm) with the E. coli cells produced benzylamine (42 mm) in 70 % conversion. Importantly, the cascade biotransformation was scaled up to 100 mL and benzylamine was successfully isolated in 57 % yield. Secondly, an artificial biosynthesis pathway to benzylamine from glucose was developed by combining the nine-step cascade with an enhanced l-phenylalanine synthesis pathway in cells. Fermentation with E. coli LZ249 gave benzylamine in 4.3 mm concentration from glucose. In addition, one-pot syntheses of several useful benzylamines from the easily available styrenes were achieved, representing a new type of alkene transformation by formal oxidative cleavage and reductive amination.
Collapse
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Jiwei Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
5
|
Wei L, Wang Z, Zhang G, Ye B. Characterization of Terminators in Saccharomyces cerevisiae and an Exploration of Factors Affecting Their Strength. Chembiochem 2017; 18:2422-2427. [PMID: 29058813 DOI: 10.1002/cbic.201700516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 11/06/2022]
Abstract
Terminators in eukaryotes play an important role in regulating the transcription process by influencing mRNA stability, translational efficiency, and localization. Herein, the strengths of 100 natural terminators in Saccharomyces cerevisiae have been characterized by inserting each terminator downstream of the TYS1p-enhanced green fluorescent protein (eGFP) reporter gene and measuring the fluorescent intensity (FI) of eGFP. Within this library, there are 45 strong terminators, 31 moderate terminators, and 24 weak terminators. The strength of these terminators, relative to that of PGK1t standard terminator, ranges from 0.0613 to 1.8002, with a mean relative FI of 0.9945. Mutating the control elements of terminators further suggests that the efficiency element has an important effect on terminator strength. The use of strong terminators will result in an enhanced level of mRNA and protein production; this indicates that gene expression can be directly influenced by terminator selection. Pairing a terminator with an inducible promoter or a strong constitutive promoter has less effect on gene expression; however, pairing with a week promoter will significantly increase the level of gene expression. Through exchange of the reporter genes, it can be demonstrated that the terminator functions as a genetic component and is independent of the coding region. This work demonstrates that the terminator is an important regulatory element and can be considered in applications for the fine-tuning of gene expression and metabolic pathways.
Collapse
Affiliation(s)
- Linna Wei
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical, Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P.R. China
| | - Zhaoxia Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical, Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P.R. China
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical, Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P.R. China
| | - Bangce Ye
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical, Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, P.R. China
| |
Collapse
|
6
|
Microbial Production of Amino Acid-Related Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 159:255-269. [PMID: 27872963 DOI: 10.1007/10_2016_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Corynebacterium glutamicum is the workhorse of the production of proteinogenic amino acids used in food and feed biotechnology. After more than 50 years of safe amino acid production, C. glutamicum has recently also been engineered for the production of amino acid-derived compounds, which find various applications, e.g., as synthons for the chemical industry in several markets including the polymer market. The amino acid-derived compounds such as non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated amino acids have similar carbon backbones and functional groups as their amino acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as putrescine and cadaverine. Since transamination is the final step in several amino acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are also amenable to production using recombinant C. glutamicum strains. Approaches for metabolic engineering of C. glutamicum for production of amino acid-derived compounds will be described, and where applicable, production from alternative carbon sources or use of genome streamline will be referred to. The excellent large-scale fermentation experience with C. glutamicum offers the possibility that these amino acid-derived speciality products may enter large-volume markets.
Collapse
|
7
|
Zhu S, Guo J, Wang X, Wang J, Fan W. Alcoholysis: A Promising Technology for Conversion of Lignocellulose and Platform Chemicals. CHEMSUSCHEM 2017; 10:2547-2559. [PMID: 28485128 DOI: 10.1002/cssc.201700597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Indexed: 06/07/2023]
Abstract
In the catalytic conversion of lignocellulose to valuable products, the first entry point is to break down these biopolymers to sugar units or aromatic monomers, which is conventionally achieved by hydrolysis in water medium. Recent years have seen tremendous progress in the alcoholysis process, which has remarkable advantages, such as the avoidance of treating waste water, suppression of humins or chars, and enhancement of reaction rate and product yield. Advances have been focused on the alcoholysis of cellulose, hemicellulose, and lignin to alkyl glucosides, xylosides, and aromatic monomers, respectively. Alcoholysis of the platform molecule furfuryl alcohol (FAL) to alkyl levulinate (AL) and integrated alcoholysis of cellulose and furfural into AL are also summarized. This Minireview highlights the comparisons between alcoholysis and hydrolysis, the reaction mechanism of alcoholysis, and future challenges for industrial applications.
Collapse
Affiliation(s)
- Shanhui Zhu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
| | - Jing Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Xun Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030001, P.R. China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R. China
| |
Collapse
|
8
|
Zhou Y, Wu S, Li Z. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobased l-Phenylalanine to High-Value Chiral Chemicals. Angew Chem Int Ed Engl 2016; 55:11647-50. [PMID: 27512928 DOI: 10.1002/anie.201606235] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Indexed: 11/08/2022]
Abstract
Sustainable synthesis of useful and valuable chiral fine chemicals from renewable feedstocks is highly desirable but remains challenging. Reported herein is a designed and engineered set of unique non-natural biocatalytic cascades to achieve the asymmetric synthesis of chiral epoxide, diols, hydroxy acid, and amino acid in high yield and with excellent ee values from the easily available biobased l-phenylalanine. Each of the cascades was efficiently performed in one pot by using the cells of a single recombinant strain over-expressing 4-10 different enzymes. The cascade biocatalysis approach is promising for upgrading biobased bulk chemicals to high-value chiral chemicals. In addition, combining the non-natural enzyme cascades with the natural metabolic pathway of the host strain enabled the fermentative production of the chiral fine chemicals from glucose.
Collapse
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
9
|
Zhou Y, Wu S, Li Z. Cascade Biocatalysis for Sustainable Asymmetric Synthesis: From Biobasedl-Phenylalanine to High-Value Chiral Chemicals. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606235] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI); Life Sciences Institute; National University of Singapore; 28 Medical Drive Singapore 117456 Singapore
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
10
|
Wallace S, Balskus EP. Designer Micelles Accelerate Flux Through Engineered Metabolism in E. coli and Support Biocompatible Chemistry. Angew Chem Int Ed Engl 2016; 55:6023-7. [PMID: 27061024 PMCID: PMC4973394 DOI: 10.1002/anie.201600966] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/17/2016] [Indexed: 01/04/2023]
Abstract
Synthetic biology has enabled the production of many value-added chemicals via microbial fermentation. However, the problem of low product titers from recombinant pathways has limited the utility of this approach. Methods to increase metabolic flux are therefore critical to the success of metabolic engineering. Here we demonstrate that vitamin E-derived designer micelles, originally developed for use in synthetic chemistry, are biocompatible and accelerate flux through a styrene production pathway in Escherichia coli. We show that these micelles associate non-covalently with the bacterial outer-membrane and that this interaction increases membrane permeability. In addition, these micelles also accommodate both heterogeneous and organic-soluble transition metal catalysts and accelerate biocompatible cyclopropanation in vivo. Overall, this work demonstrates that these surfactants hold great promise for further application in the field of synthetic biotechnology, and for expanding the types of molecules that can be readily accessed from renewable resources via the combination of microbial fermentation and biocompatible chemistry.
Collapse
Affiliation(s)
- Stephen Wallace
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
11
|
Wallace S, Balskus EP. Designer Micelles Accelerate Flux Through Engineered Metabolism in
E. coli
and Support Biocompatible Chemistry. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600966] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Stephen Wallace
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
12
|
Suastegui M, Matthiesen JE, Carraher JM, Hernandez N, Rodriguez Quiroz N, Okerlund A, Cochran EW, Shao Z, Tessonnier J. Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar. Angew Chem Int Ed Engl 2016; 55:2368-73. [DOI: 10.1002/anie.201509653] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Miguel Suastegui
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC) Ames IA 50011 USA
| | - John E. Matthiesen
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC) Ames IA 50011 USA
- US Department of Energy Ames Laboratory Ames IA 50011 USA
| | - Jack M. Carraher
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC) Ames IA 50011 USA
| | - Nacu Hernandez
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | | | - Adam Okerlund
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC) Ames IA 50011 USA
| | - Eric W. Cochran
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC) Ames IA 50011 USA
| | - Jean‐Philippe Tessonnier
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- NSF Engineering Research Center for Biorenewable Chemicals (CBiRC) Ames IA 50011 USA
- US Department of Energy Ames Laboratory Ames IA 50011 USA
| |
Collapse
|
13
|
Combining Metabolic Engineering and Electrocatalysis: Application to the Production of Polyamides from Sugar. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Höhne M, Kabisch J. Schmerzmittel brauen: Eine Hefe-Zellfabrik produziert Opiate aus Zucker. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Matthias Höhne
- Universität Greifswald; Protein Biochemie; Institut für Biochemie; F.-Hausdorff-Straße 4 17489 Greifswald Deutschland
| | - Johannes Kabisch
- Universität Greifswald; Nachwuchsgruppe Biofuels; Institut für Biochemie; F.-Hausdorff-Straße 4 17489 Greifswald Deutschland
| |
Collapse
|
15
|
Höhne M, Kabisch J. Brewing Painkillers: A Yeast Cell Factory for the Production of Opioids from Sugar. Angew Chem Int Ed Engl 2016; 55:1248-50. [DOI: 10.1002/anie.201510333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Höhne
- Greifswald University; Protein Biochemistry; Institute of Biochemistry; F.-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Johannes Kabisch
- Greifswald University; Junior research group Drop-In Biofuels; Institute of Biochemistry; F.-Hausdorff-Straße 4 17489 Greifswald Germany
| |
Collapse
|
16
|
Li W, Zhang Y, Xu Z, Meng Q, Fan Z, Ye S, Zhang G. Assembly of MOF Microcapsules with Size-Selective Permeability on Cell Walls. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wanbin Li
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Yufan Zhang
- College of Engineering; University of California; Berkeley CA 94720 USA
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Qin Meng
- Department of Chemical and Biochemical Engineering; State Key Laboratory of Chemical Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Shuaiju Ye
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| |
Collapse
|
17
|
Li W, Zhang Y, Xu Z, Meng Q, Fan Z, Ye S, Zhang G. Assembly of MOF Microcapsules with Size-Selective Permeability on Cell Walls. Angew Chem Int Ed Engl 2015; 55:955-9. [DOI: 10.1002/anie.201508795] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Wanbin Li
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Yufan Zhang
- College of Engineering; University of California; Berkeley CA 94720 USA
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Qin Meng
- Department of Chemical and Biochemical Engineering; State Key Laboratory of Chemical Engineering; Zhejiang University; Hangzhou 310027 P. R. China
| | - Zheng Fan
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Shuaiju Ye
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering; State Key Lab Base of Green Chemical Synthesis Technology; Zhejiang University of Technology; Hangzhou 310014 P. R. China
| |
Collapse
|
18
|
Siebert D, Wendisch VF. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:91. [PMID: 26110019 PMCID: PMC4478622 DOI: 10.1186/s13068-015-0269-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/05/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Production of the versatile bulk chemical 1,2-propanediol and the potential biofuel 1-propanol is still dependent on petroleum, but some approaches to establish bio-based production from renewable feed stocks and to avoid toxic intermediates have been described. The biotechnological workhorse Corynebacterium glutamicum has also been shown to be able to overproduce 1,2-propanediol by metabolic engineering. Additionally, C. glutamicum has previously been engineered for production of the biofuels ethanol and isobutanol but not for 1-propanol. RESULTS In this study, the improved production of 1,2-propanediol by C. glutamicum is presented. The product yield of a C. glutamicum strain expressing the heterologous genes gldA and mgsA from Escherichia coli that encode methylglyoxal synthase gene and glycerol dehydrogenase, respectively, was improved by additional expression of alcohol dehydrogenase gene yqhD from E. coli leading to a yield of 0.131 mol/mol glucose. Deletion of the endogenous genes hdpA and ldh encoding dihydroxyacetone phosphate phosphatase and lactate dehydrogenase, respectively, prevented formation of glycerol and lactate as by-products and improved the yield to 0.343 mol/mol glucose. To construct a 1-propanol producer, the operon ppdABC from Klebsiella oxytoca encoding diol dehydratase was expressed in the improved 1,2-propanediol producing strain ending up with 12 mM 1-propanol and up to 60 mM unconverted 1,2-propanediol. Thus, B12-dependent diol dehydratase activity may be limiting 1-propanol production. CONCLUSIONS Production of 1,2-propanediol by C. glutamicum was improved by metabolic engineering targeting endogenous enzymes. Furthermore, to the best of our knowledge, production of 1-propanol by recombinant C. glutamicum was demonstrated for the first time.
Collapse
Affiliation(s)
- Daniel Siebert
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
19
|
Wallace S, Balskus EP. Interfacing Microbial Styrene Production with a Biocompatible Cyclopropanation Reaction. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Wallace S, Balskus EP. Interfacing microbial styrene production with a biocompatible cyclopropanation reaction. Angew Chem Int Ed Engl 2015; 54:7106-9. [PMID: 25925138 DOI: 10.1002/anie.201502185] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 01/04/2023]
Abstract
The introduction of new reactivity into living organisms is a major challenge in synthetic biology. Despite an increasing interest in both the development of small-molecule catalysts that are compatible with aqueous media and the engineering of enzymes to perform new chemistry in vitro, the integration of non-native reactivity into metabolic pathways for small-molecule production has been underexplored. Herein we report a biocompatible iron(III) phthalocyanine catalyst capable of efficient olefin cyclopropanation in the presence of a living microorganism. By interfacing this catalyst with E. coli engineered to produce styrene, we synthesized non-natural phenyl cyclopropanes directly from D-glucose in single-vessel fermentations. This process is the first example of the combination of nonbiological carbene-transfer reactivity with cellular metabolism for small-molecule production.
Collapse
Affiliation(s)
- Stephen Wallace
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 (USA) http://scholar.harvard.edu/balskus
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 (USA) http://scholar.harvard.edu/balskus.
| |
Collapse
|