1
|
Jin Z, Li Y, Li K, Zhou J, Yeung J, Ling C, Yim W, He T, Cheng Y, Xu M, Creyer MN, Chang YC, Fajtová P, Retout M, Qi B, Li S, O'Donoghue AJ, Jokerst JV. Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing. Angew Chem Int Ed Engl 2023; 62:e202214394. [PMID: 36409652 PMCID: PMC9852014 DOI: 10.1002/anie.202214394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Aromatic interactions are commonly involved in the assembly of naturally occurring building blocks, and these interactions can be replicated in an artificial setting to produce functional materials. Here we describe a colorimetric biosensor using co-assembly experiments with plasmonic gold and surfactant-like peptides (SLPs) spanning a wide range of aromatic residues, polar stretches, and interfacial affinities. The SLPs programmed in DDD-(ZZ)x -FFPC self-assemble into higher-order structures in response to a protease and subsequently modulate the colloidal dispersity of gold leading to a colorimetric readout. Results show the strong aggregation propensity of the FFPC tail without polar DDD head. The SLPs were specific to the target protease, i.e., Mpro , a biomarker for SARS-CoV-2. This system is a simple and visual tool that senses Mpro in phosphate buffer, exhaled breath condensate, and saliva with detection limits of 15.7, 20.8, and 26.1 nM, respectively. These results may have value in designing other protease testing methods.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ke Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chuxuan Ling
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Maurice Retout
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Tepeli Büyüksünetçi Y, Anık Ü. Graphene‐Gold Hybrid Nanomaterial Based Impedimetric Immunosensor for H3N2 Influenza A Virus Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202202614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yudum Tepeli Büyüksünetçi
- Sensors, Biosensors and Nano-Diagnostic Laboratory Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
| | - Ülkü Anık
- Sensors, Biosensors and Nano-Diagnostic Laboratory Research Laboratory Center Mugla Sitki Kocman University Kotekli-Mugla/ Turkey
- Mugla Sitki Kocman University, Faculty of Science Chemistry Department Kotekli-Mugla/ Turkey
| |
Collapse
|
3
|
Ali A, Nettey-Oppong EE, Effah E, Yu CY, Muhammad R, Soomro TA, Byun KM, Choi SH. Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses. BIOSENSORS 2022; 12:bios12080590. [PMID: 36004986 PMCID: PMC9405795 DOI: 10.3390/bios12080590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/12/2023]
Abstract
As surface-enhanced Raman scattering (SERS) has been used to diagnose several respiratory viruses (e.g., influenza A virus subtypes such as H1N1 and the new coronavirus SARS-CoV-2), SERS is gaining popularity as a method for diagnosing viruses at the point-of-care. Although the prior and quick diagnosis of respiratory viruses is critical in the outbreak of infectious disease, ELISA, PCR, and RT-PCR have been used to detect respiratory viruses for pandemic control that are limited for point-of-care testing. SERS provides quantitative data with high specificity and sensitivity in a real-time, label-free, and multiplex manner recognizing molecular fingerprints. Recently, the design of Raman spectroscopy system was simplified from a complicated design to a small and easily accessible form that enables point-of-care testing. We review the optical design (e.g., laser wavelength/power and detectors) of commercialized and customized handheld Raman instruments. As respiratory viruses have prominent risk on the pandemic, we review the applications of handheld Raman devices for detecting respiratory viruses. By instrumentation and commercialization advancements, the advent of the portable SERS device creates a fast, accurate, practical, and cost-effective analytical method for virus detection, and would continue to attract more attention in point-of-care testing.
Collapse
Affiliation(s)
- Ahmed Ali
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan;
| | - Ezekiel Edward Nettey-Oppong
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
| | - Elijah Effah
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
| | - Chan Yeong Yu
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
| | - Riaz Muhammad
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
| | - Toufique Ahmed Soomro
- Department of Electronic Engineering, Quid-e-Awam University of Engineering, Science and Technology, Larkana 77150, Pakistan;
| | - Kyung Min Byun
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Korea
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Korea
| | - Seung Ho Choi
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (E.E.N.-O.); (E.E.); (C.Y.Y.); (R.M.)
- Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine, Seoul 06229, Korea
| |
Collapse
|
4
|
Huang G, Zhao H, Li P, Liu J, Chen S, Ge M, Qin M, Zhou G, Wang Y, Li S, Cheng Y, Huang Q, Wang J, Wang H, Yang L. Construction of Optimal SERS Hotspots Based on Capturing the Spike Receptor-Binding Domain (RBD) of SARS-CoV-2 for Highly Sensitive and Specific Detection by a Fish Model. Anal Chem 2021; 93:16086-16095. [PMID: 34730332 PMCID: PMC8577364 DOI: 10.1021/acs.analchem.1c03807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
It is highly challenging to construct the best SERS hotspots for the detection of proteins by surface-enhanced Raman spectroscopy (SERS). Using its own characteristics to construct hotspots can achieve the effect of sensitivity and specificity. In this study, we built a fishing mode device to detect the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at low concentrations in different detection environments and obtained a sensitive SERS signal response. Based on the spatial resolution of proteins and their protein-specific recognition functions, SERS hotspots were constructed using aptamers and small molecules that can specifically bind to RBD and cooperate with Au nanoparticles (NPs) to detect RBD in the environment using SERS signals of beacon molecules. Therefore, two kinds of AuNPs modified with aptamers and small molecules were used in the fishing mode device, which can specifically recognize and bind RBD to form a stable hotspot to achieve high sensitivity and specificity for RBD detection. The fishing mode device can detect the presence of RBD at concentrations as low as 0.625 ng/mL and can produce a good SERS signal response within 15 min. Meanwhile, we can detect an RBD of 0.625 ng/mL in the mixed solution with various proteins, and the concentration of RBD in the complex environment of urine and blood can be as low as 1.25 ng/mL. This provides a research basis for SERS in practical applications for protein detection work.
Collapse
Affiliation(s)
- Guangyao Huang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| | - Hongxin Zhao
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Pan Li
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
| | - Juanjuan Liu
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Siyu Chen
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Meihong Ge
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Miao Qin
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Guoliang Zhou
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Yongtao Wang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Shaofei Li
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Yizhuang Cheng
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Qiang Huang
- Multiscale Research Institute of Complex Systems,
Fudan University, Shanghai 201203,
China
| | - Junfeng Wang
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Hongzhi Wang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| | - Liangbao Yang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| |
Collapse
|
5
|
Zhang Z, Wang H, Su M, Sun Y, Tan S, Ponkratova E, Zhao M, Wu D, Wang K, Pan Q, Chen B, Zuev D, Song Y. Printed Nanochain‐Based Colorimetric Assay for Quantitative Virus Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Meng Su
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Yali Sun
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Shuang‐Jie Tan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ekaterina Ponkratova
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics Fudan University Shanghai 200433 P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center General Hospital of the People's Liberation Army of China Beijing 100853 P. R. China
| | - Keyu Wang
- Department of Clinical Laboratory The second medical center of Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Dmitry Zuev
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Yanlin Song
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| |
Collapse
|
6
|
Zhang Z, Wang H, Su M, Sun Y, Tan SJ, Ponkratova E, Zhao M, Wu D, Wang K, Pan Q, Chen B, Zuev D, Song Y. Printed Nanochain-Based Colorimetric Assay for Quantitative Virus Detection. Angew Chem Int Ed Engl 2021; 60:24234-24240. [PMID: 34494351 DOI: 10.1002/anie.202109985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Fast and ultrasensitive detection of pathogens is very important for efficient monitoring and prevention of viral infections. Here, we demonstrate a label-free optical detection approach that uses a printed nanochain assay for colorimetric quantitative testing of viruses. The antibody-modified nanochains have high activity and specificity which can rapidly identify target viruses directly from biofluids in 15 min, as well as differentiate their subtypes. Arising from the resonance induced near-field enhancement, the color of nanochains changes with the binding of viruses that are easily observed by a smartphone. We achieve the detection limit of 1 PFU μL-1 through optimizing the optical response of nanochains in visible region. Besides, it allows for real-time response to virus concentrations ranging from 0 to 1.0×105 PFU mL-1 . This low-cost and portable platform is also applicable to rapid detection of other biomarkers, making it attractive for many clinical applications.
Collapse
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Shuang-Jie Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ekaterina Ponkratova
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, 200433, P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center, General Hospital of the People's Liberation Army of China, Beijing, 100853, P. R. China
| | - Keyu Wang
- Department of Clinical Laboratory, The second medical center of Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Dmitry Zuev
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| |
Collapse
|
7
|
Saviñon-Flores F, Méndez E, López-Castaños M, Carabarin-Lima A, López-Castaños KA, González-Fuentes MA, Méndez-Albores A. A Review on SERS-Based Detection of Human Virus Infections: Influenza and Coronavirus. BIOSENSORS 2021; 11:66. [PMID: 33670852 PMCID: PMC7997427 DOI: 10.3390/bios11030066] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
The diagnosis of respiratory viruses of zoonotic origin (RVsZO) such as influenza and coronaviruses in humans is crucial, because their spread and pandemic threat are the highest. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with promising impact for the point-of-care diagnosis of viruses. It has been applied to a variety of influenza A virus subtypes, such as the H1N1 and the novel coronavirus SARS-CoV-2. In this work, a review of the strategies used for the detection of RVsZO by SERS is presented. In addition, relevant information about the SERS technique, anthropozoonosis, and RVsZO is provided for a better understanding of the theme. The direct identification is based on trapping the viruses within the interstices of plasmonic nanoparticles and recording the SERS signal from gene fragments or membrane proteins. Quantitative mono- and multiplexed assays have been achieved following an indirect format through a SERS-based sandwich immunoassay. Based on this review, the development of multiplex assays that incorporate the detection of RVsZO together with their specific biomarkers and/or secondary disease biomarkers resulting from the infection progress would be desirable. These configurations could be used as a double confirmation or to evaluate the health condition of the patient.
Collapse
Affiliation(s)
- Fernanda Saviñon-Flores
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Erika Méndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Mónica López-Castaños
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Karen A. López-Castaños
- Centro de Química-ICUAP-Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Miguel A. González-Fuentes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Alia Méndez-Albores
- Centro de Química-ICUAP-Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| |
Collapse
|
8
|
Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Zhang J, Xiang Y, Wang M, Basu A, Lu Y. Dose-Dependent Response of Personal Glucose Meters to Nicotinamide Coenzymes: Applications to Point-of-Care Diagnostics of Many Non-Glucose Targets in a Single Step. Angew Chem Int Ed Engl 2015; 55:732-6. [PMID: 26593219 DOI: 10.1002/anie.201507563] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 01/26/2023]
Abstract
We report a discovery that personal glucose meters (PGMs) can give a dose-dependent response to nicotinamide coenzymes, such as the reduced form of nicotinamide adenine dinucleotide (NADH). We have developed methods that take advantage of this discovery to perform one-step homogeneous assays of many non-glucose targets that are difficult to recognize by DNAzymes, aptamers, or antibodies, and without the need for conjugation and multiple steps of sample dilution, separation, or fluid manipulation. The methods are based on the target-induced consumption or production of NADH through cascade enzymatic reactions. Simultaneous monitoring of the glucose and L-lactate levels in human plasma from patients with diabetes is demonstrated and the results are comparable to those from current standard test methods. Since a large number of commercially available enzymatic assay kits utilize NADH in their detection, this discovery will allow the transformation of almost all of these clinical lab tests into POC tests that use a PGM.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA)
| | - Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).,Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Miao Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).,Department of Chemistry, Tsinghua University, Beijing 100084 (P.R. China)
| | - Ananda Basu
- Division of Endocrinology, College of Medicine, Mayo Clinic, Rochester, MN 55905 (USA)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA).
| |
Collapse
|
10
|
Zhang J, Xiang Y, Novak DE, Hoganson GE, Zhu J, Lu Y. Using a Personal Glucose Meter and Alkaline Phosphatase for Point-of-Care Quantification of Galactose-1-Phosphate Uridyltransferase in Clinical Galactosemia Diagnosis. Chem Asian J 2015; 10:2221-7. [DOI: 10.1002/asia.201500642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Yu Xiang
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Donna E. Novak
- Division of Genetics; University of Illinois at Chicago; 840 S Wood St, CSB Chicago IL 60612 USA
| | - George E. Hoganson
- Division of Genetics; University of Illinois at Chicago; 840 S Wood St, CSB Chicago IL 60612 USA
| | - Junjie Zhu
- School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210093 P. R. China
| | - Yi Lu
- Department of Chemistry; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|