1
|
Yang B, Niu K, Haag F, Cao N, Zhang J, Zhang H, Li Q, Allegretti F, Björk J, Barth JV, Chi L. Abiotic Formation of an Amide Bond via Surface‐Supported Direct Carboxyl–Amine Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Biao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 215123 Suzhou P. R. China
- Physics Department E20 Technical University of Munich 85748 Garching Germany
| | - Kaifeng Niu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 215123 Suzhou P. R. China
- Department of Physics, Chemistry and Biology, IFM Linköping University 58183 Linköping Sweden
| | - Felix Haag
- Physics Department E20 Technical University of Munich 85748 Garching Germany
| | - Nan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 215123 Suzhou P. R. China
- Physics Department E20 Technical University of Munich 85748 Garching Germany
| | - Junjie Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 215123 Suzhou P. R. China
| | - Haiming Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 215123 Suzhou P. R. China
| | - Qing Li
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 215123 Suzhou P. R. China
| | | | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFM Linköping University 58183 Linköping Sweden
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich 85748 Garching Germany
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 215123 Suzhou P. R. China
- Institute for Advanced Study (TUM-IAS) Technical University of Munich 85748 Garching Germany
| |
Collapse
|
2
|
Natarajan P, Chuskit D, Priya P. Readily available alkylbenzenes as precursors for one-pot preparation of buta-1,3-dienes under DDQ visible-light photocatalysis in benzotrifluoride. Org Chem Front 2022. [DOI: 10.1039/d1qo01869h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Easily accessible alkylbenzenes are highly valuable starting materials and solvents in synthetic organic chemistry for production of pharmaceuticals, plastics, synthetic rubber, dyes, etc. Herein, by employing alkylbenzenes as precursors, an...
Collapse
|
3
|
Yang B, Niu K, Haag F, Cao N, Zhang J, Zhang H, Li Q, Allegretti F, Björk J, Barth JV, Chi L. Abiotic Formation of Amide Bond via Surface-Supported Direct Carboxyl-Amine Coupling. Angew Chem Int Ed Engl 2021; 61:e202113590. [PMID: 34708485 DOI: 10.1002/anie.202113590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 11/08/2022]
Abstract
Amide bond formation is one of the most important reactions in biochemistry, notably being of crucial importance for the origin of life. Herein, we combine scanning tunneling microscopy and X-ray photoelectron spectroscopy studies to provide evidence for thermally activated abiotic formation of amide bonds between adsorbed precursors through direct carboxyl-amine coupling under ultrahigh vacuum conditions by means of on-surface synthesis. Complementary insights from temperature-programmed desorption measurements and density functional theory calculations reveal the competition between cross-coupling amide formation and decarboxylation reactions on the Au(111) surface. Furthermore, we demonstrate the critical influence of the employed metal support: whereas on Au(111) the coupling readily occurs, different reaction scenarios prevail on Ag(111) and Cu(111). The systematic experiments signal that archetypical bio-related molecules can be abiotically synthesized in clean environments without water or oxygen.
Collapse
Affiliation(s)
- Biao Yang
- Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), 199 Ren-ai Road, Suzhou Industrial Park, 215123, Suzhou, CHINA
| | - Kaifeng Niu
- Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), 199 Ren-ai Road, Suzhou Industrial Park, 215123, Suzhou, CHINA
| | - Felix Haag
- Technical University of Munich: Technische Universitat Munchen, Physics department, James-Franck-Straße 1, 85748, GARCHING, GERMANY
| | - Nan Cao
- Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), 199 Ren-ai Road, Suzhou Industrial Park, 215123, Suzhou, CHINA
| | - Junjie Zhang
- Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), 199 Ren-ai Road, Suzhou Industrial Park, 215123, Suzhou, CHINA
| | - Haiming Zhang
- Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), 199 Ren-ai Road, Suzhou Industrial Park, 215123, Suzhou, CHINA
| | - Qing Li
- Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), 199 Ren-ai Road, Suzhou Industrial Park, 215123, Suzhou, CHINA
| | - Francesco Allegretti
- Technical University Munich: Technische Universitat Munchen, Physics department, James-Franck-Str.1, 85748, Garching, GERMANY
| | - Jonas Björk
- Linköping University, Department of Phesics, Chemistry and Biology, 58183, Linköping, SWEDEN
| | - Johannes V Barth
- Technical University of Munich: Technische Universitat Munchen, Physics department, James-Franck-Str.1, 85748, Garching, GERMANY
| | - Lifeng Chi
- Soochow University, Institute of Functional Nano & Soft Materials (FUNSOM), Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Box 33, 199 Ren-ai Road, Suzhou Industrial Park, also: Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, 215123, Suzhou, CHINA
| |
Collapse
|
4
|
Zhang JS, Liu L, Chen T, Han LB. Cross-Dehydrogenative Alkynylation: A Powerful Tool for the Synthesis of Internal Alkynes. CHEMSUSCHEM 2020; 13:4776-4794. [PMID: 32667732 DOI: 10.1002/cssc.202001165] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Alkynes are among the most fundamentally important organic compounds and are widely used in synthetic chemistry, biochemistry, and materials science. Thus, the development of an efficient and sustainable method for the preparation of alkynes has been a central concern in organic synthesis. Cross-dehydrogenative coupling utilizing E-H and Z-H bonds in two different molecules can avoid the need for prefunctionalization of starting materials and has become one of the most straightforward methods for the construction of E-Z chemical bonds. This Review summarizes recent progress in the preparation of internal alkynes by cross-dehydrogenative coupling with terminal alkynes.
Collapse
Affiliation(s)
- Ji-Shu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Li-Biao Han
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 3058571, Japan
| |
Collapse
|
5
|
Palmino F, Loppacher C, Chérioux F. Photochemistry Highlights on On-Surface Synthesis. Chemphyschem 2019; 20:2271-2280. [PMID: 31225692 DOI: 10.1002/cphc.201900312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 11/12/2022]
Abstract
On-surface chemistry is a promising way to achieve the bottom-up construction of covalently-bonded molecular precursors into extended atomically-precise polymers adsorbed on surfaces. These polymers exhibit unprecedented physical or chemical properties which are of great interest for various potential applications. These nanostructures were mainly obtained in ultra-high vacuum (UHV) on noble metal single-crystal surfaces by thermal annealing as stimulus to provoke the polymerization with a catalytic role of the surface adatoms. Nevertheless, photons are also a powerful source of energy to induce the formation of covalent architectures, even if it is less-used on surfaces than in solution. In this minireview, we discuss the photo-induced on-surface polymerization from the basic mechanisms of photochemistry to the formation of extended polymers on different kinds of surfaces, which are characterized by scanning probe microscopies.
Collapse
Affiliation(s)
- F Palmino
- Institut FEMTO-ST, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, F-25030, Besancon, France
| | - C Loppacher
- Aix-Marseille Université, CNRS, IM2NP, F-13397, Marseille, France
| | - F Chérioux
- Institut FEMTO-ST, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, F-25030, Besancon, France
| |
Collapse
|
6
|
Chen Z, Lin T, Zhang L, Zhang L, Xiang B, Xu H, Klappenberger F, Barth JV, Klyatskaya S, Ruben M. Surface‐Dependent Chemoselectivity in C−C Coupling Reactions. Angew Chem Int Ed Engl 2019; 58:8356-8361. [DOI: 10.1002/anie.201900636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/05/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Zhi Chen
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Tao Lin
- Department of Physics E20Technical University of Munich (TUM) 85748 Garching Germany
- College of New Materials and New EnergiesShenzhen Technology University Shenzhen 518118 China
| | - Liding Zhang
- Department of Physics E20Technical University of Munich (TUM) 85748 Garching Germany
| | - Lei Zhang
- Department of PhysicsSouthern University of Science and Technology Shenzhen 518055 China
| | - Bingxi Xiang
- College of New Materials and New EnergiesShenzhen Technology University Shenzhen 518118 China
| | - Hu Xu
- Department of PhysicsSouthern University of Science and Technology Shenzhen 518055 China
| | - Florian Klappenberger
- Department of Physics E20Technical University of Munich (TUM) 85748 Garching Germany
| | - Johannes V. Barth
- Department of Physics E20Technical University of Munich (TUM) 85748 Garching Germany
| | - Svetlana Klyatskaya
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| | - Mario Ruben
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
- IPCMS-CNRSUniversité de Strasbourg Strasbourg F-67034 France
| |
Collapse
|
7
|
Chen Z, Lin T, Zhang L, Zhang L, Xiang B, Xu H, Klappenberger F, Barth JV, Klyatskaya S, Ruben M. Surface‐Dependent Chemoselectivity in C−C Coupling Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi Chen
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Tao Lin
- Department of Physics E20Technical University of Munich (TUM) 85748 Garching Germany
- College of New Materials and New EnergiesShenzhen Technology University Shenzhen 518118 China
| | - Liding Zhang
- Department of Physics E20Technical University of Munich (TUM) 85748 Garching Germany
| | - Lei Zhang
- Department of PhysicsSouthern University of Science and Technology Shenzhen 518055 China
| | - Bingxi Xiang
- College of New Materials and New EnergiesShenzhen Technology University Shenzhen 518118 China
| | - Hu Xu
- Department of PhysicsSouthern University of Science and Technology Shenzhen 518055 China
| | - Florian Klappenberger
- Department of Physics E20Technical University of Munich (TUM) 85748 Garching Germany
| | - Johannes V. Barth
- Department of Physics E20Technical University of Munich (TUM) 85748 Garching Germany
| | - Svetlana Klyatskaya
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
| | - Mario Ruben
- Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
- IPCMS-CNRSUniversité de Strasbourg Strasbourg F-67034 France
| |
Collapse
|
8
|
Sun Q, Tran BV, Cai L, Ma H, Yu X, Yuan C, Stöhr M, Xu W. On-Surface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl gem
-Dibromides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Sun
- Interdisciplinary Materials Research Center; Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P. R. China
| | - Bay V. Tran
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Liangliang Cai
- Interdisciplinary Materials Research Center; Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P. R. China
| | - Honghong Ma
- Interdisciplinary Materials Research Center; Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P. R. China
| | - Xin Yu
- Interdisciplinary Materials Research Center; Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P. R. China
| | - Chunxue Yuan
- Interdisciplinary Materials Research Center; Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P. R. China
| | - Meike Stöhr
- Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wei Xu
- Interdisciplinary Materials Research Center; Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P. R. China
| |
Collapse
|
9
|
Sun Q, Tran BV, Cai L, Ma H, Yu X, Yuan C, Stöhr M, Xu W. On-Surface Formation of Cumulene by Dehalogenative Homocoupling of Alkenyl gem-Dibromides. Angew Chem Int Ed Engl 2017; 56:12165-12169. [PMID: 28772061 DOI: 10.1002/anie.201706104] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Indexed: 11/09/2022]
Abstract
The on-surface activation of carbon-halogen groups is an efficient route to produce radicals for constructing various hydrocarbons and carbon nanostructures. To date, the employed halide precursors have only one halogen attached to a carbon atom. It is thus of interest to study the effect of attaching more than one halogen atom to a carbon atom with the aim of producing multiple unpaired electrons. By introducing an alkenyl gem-dibromide, cumulene products were fabricated on a Au(111) surface by dehalogenative homocoupling reactions. The reaction products and pathways were unambiguously characterized by a combination of high-resolution scanning tunneling microscopy and non-contact atomic force microscopy measurements together with density functional calculations. This study further supplements the database of on-surface synthesis strategies and provides a facile manner for incorporation of more complicated carbon scaffolds into surface nanostructures.
Collapse
Affiliation(s)
- Qiang Sun
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Bay V Tran
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Liangliang Cai
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Honghong Ma
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xin Yu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Chunxue Yuan
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Meike Stöhr
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
10
|
Wang T, Lv H, Fan Q, Feng L, Wu X, Zhu J. Highly Selective Synthesis of cis
-Enediynes on a Ag(111) Surface. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tao Wang
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology; University of Science and Technology of China; Hefei 230029 China
| | - Haifeng Lv
- CAS Key Laboratory of Materials Science and Engineering, School of Chemistry and Materials Science, and CAS Center for Excellence in Nanoscience; University of Science and Technology of China; Hefei 230026 China
| | - Qitang Fan
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology; University of Science and Technology of China; Hefei 230029 China
| | - Lin Feng
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology; University of Science and Technology of China; Hefei 230029 China
| | - Xiaojun Wu
- CAS Key Laboratory of Materials Science and Engineering, School of Chemistry and Materials Science, and CAS Center for Excellence in Nanoscience; University of Science and Technology of China; Hefei 230026 China
- Hefei National Laboratory of Physical Sciences at the Microscale and Synergetic Innovation of Quantum Information & Quantum Technology; University of Science and Technology of China; Hefei 230026 China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology; University of Science and Technology of China; Hefei 230029 China
| |
Collapse
|
11
|
Wang T, Lv H, Fan Q, Feng L, Wu X, Zhu J. Highly Selective Synthesis of cis-Enediynes on a Ag(111) Surface. Angew Chem Int Ed Engl 2017; 56:4762-4766. [PMID: 28345286 DOI: 10.1002/anie.201701142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 11/06/2022]
Abstract
Cis-enediyne-type compounds have received much attention as potent antitumor antibiotics. The conventional synthesis of cis-enediynes in solution typically involves multiple steps and various side reactions. For the first time, selective one-step synthesis of cis-enediyne from a single reactant is reported on a Ag(111) surface with a yield up to 90 %. High selectivity for the formation of cis-enediyne originates from the steric effect posed by weak intermolecular interactions, which protect the cis-enediyne from further reaction. A series of comparative experiments and DFT-based transition-state calculations support the findings. The described synthetic approach for directing reaction pathways on-surface may illuminate potential syntheses of other unstable organic compounds.
Collapse
Affiliation(s)
- Tao Wang
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029, China
| | - Haifeng Lv
- CAS Key Laboratory of Materials Science and Engineering, School of Chemistry and Materials Science, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Qitang Fan
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029, China
| | - Lin Feng
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029, China
| | - Xiaojun Wu
- CAS Key Laboratory of Materials Science and Engineering, School of Chemistry and Materials Science, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China.,Hefei National Laboratory of Physical Sciences at the Microscale and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|
12
|
|
13
|
Held PA, Gao HY, Liu L, Mück-Lichtenfeld C, Timmer A, Mönig H, Barton D, Neugebauer J, Fuchs H, Studer A. On-Surface Domino Reactions: Glaser Coupling and Dehydrogenative Coupling of a Biscarboxylic Acid To Form Polymeric Bisacylperoxides. Angew Chem Int Ed Engl 2016; 55:9777-82. [PMID: 27410485 DOI: 10.1002/anie.201602859] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/09/2022]
Abstract
Herein we report the on-surface oxidative homocoupling of 6,6'-(1,4-buta-1,3-diynyl)bis(2-naphthoic acid) (BDNA) via bisacylperoxide formation on different Au substrates. By using this unprecedented dehydrogenative polymerization of a biscarboxylic acid, linear poly-BDNA with a chain length of over 100 nm was prepared. It is shown that the monomer BDNA can be prepared in situ at the surface via on-surface Glaser coupling of 6-ethynyl-2-naphthoic acid (ENA). Under the Glaser coupling conditions, BDNA directly undergoes polymerization to give the polymeric peroxide (poly-BDNA) representing a first example of an on-surface domino reaction. It is shown that the reaction outcome varies as a function of surface topography (Au(111) or Au(100)) and also of the surface coverage, to give branched polymers, linear polymers, or 2D metal-organic networks.
Collapse
Affiliation(s)
- Philipp Alexander Held
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Hong-Ying Gao
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany. .,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany.
| | - Lacheng Liu
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Alexander Timmer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany.,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany
| | - Dennis Barton
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Johannes Neugebauer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany. .,Center for Nanotechnology (CeNTech), Heisenbergstrasse 11, 48149, Münster, Germany.
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.
| |
Collapse
|
14
|
Held PA, Gao HY, Liu L, Mück-Lichtenfeld C, Timmer A, Mönig H, Barton D, Neugebauer J, Fuchs H, Studer A. Oberflächen-Dominoreaktion: Glaser-Kupplung und dehydrierende Kupplung von Dicarbonsäuren unter Bildung eines polymeren Bisacylperoxids. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Philipp Alexander Held
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Hong-Ying Gao
- Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech); Heisenbergstraße 11 48149 Münster Deutschland
| | - Lacheng Liu
- Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech); Heisenbergstraße 11 48149 Münster Deutschland
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Alexander Timmer
- Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech); Heisenbergstraße 11 48149 Münster Deutschland
| | - Harry Mönig
- Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech); Heisenbergstraße 11 48149 Münster Deutschland
| | - Dennis Barton
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Johannes Neugebauer
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| | - Harald Fuchs
- Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
- Center for Nanotechnology (CeNTech); Heisenbergstraße 11 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
15
|
Cai L, Sun Q, Zhang C, Ding Y, Xu W. Dehydrogenative Homocoupling of Alkyl Chains on Cu(110). Chemistry 2016; 22:1918-1921. [DOI: 10.1002/chem.201504152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Liangliang Cai
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P. R. China
| | - Qiang Sun
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P. R. China
| | - Chi Zhang
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P. R. China
| | - Yuanqi Ding
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P. R. China
| | - Wei Xu
- Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Caoan Road 4800 Shanghai 201804 P. R. China
| |
Collapse
|