1
|
Kazemi S, Jang Y, Liyanage A, Karr PA, D'Souza F. A Carbon Nanotube Binding BODIPY‐C
60
Nano Tweezer: Charge Stabilization through Sequential Electron Transfer. Angew Chem Int Ed Engl 2022; 61:e202212474. [DOI: 10.1002/anie.202212474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Shahrzad Kazemi
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Youngwoo Jang
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Anuradha Liyanage
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Paul A. Karr
- Department of Physical Sciences and Mathematics Wayne State College 1111 Main Street Wayne Nebraska, 68787 USA
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
2
|
Li Z, Chen W, Liu J, Jiang D. Can Linear Conjugated Polymers Form Stable Helical Structures on the Carbon Nanotubes? ACS APPLIED MATERIALS & INTERFACES 2022; 14:49189-49198. [PMID: 36260827 DOI: 10.1021/acsami.2c14771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The formation mechanism of ordered helical structures of conjugated polymers wrapping onto single-walled carbon nanotubes (SWCNTs) has been full of controversy in recent decades. A formation mechanism is proposed for the linear conjugated polymers wrapping around SWCNTs that the formation of helical structures is dependent on the orientation competition between backbone segments and side groups via transmission electron microscopy observations and molecular dynamics simulations. Results show that the conjugated polymers cannot always form stable helical structures, even if they have the capability to form a stable helix. In fact, only part of polymer segments presents a stable helix on the SWCNTs for the internal rotation in polymer deformations. Furthermore, a design framework is proposed to choose specific conjugated homopolymers and copolymers which can form helical structures on the SWCNTs.
Collapse
Affiliation(s)
- Zixi Li
- School of Materials, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou510275, P. R. China
| | - Wenduo Chen
- School of Materials, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou510275, P. R. China
| | - Jiayin Liu
- School of Materials, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou510275, P. R. China
| | - Dazhi Jiang
- School of Materials, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou510275, P. R. China
| |
Collapse
|
3
|
Mukhopadhyay A, Liu K, Paulino V, Olivier JH. Modulating the Conduction Band Energies of Si Electrode Interfaces Functionalized with Monolayers of a Bay-Substituted Perylene Bisimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4266-4275. [PMID: 35353503 DOI: 10.1021/acs.langmuir.1c03423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The confinement of π-conjugated chromophores on silicon (Si) electrode surfaces is a powerful approach to engineer electroresponsive monolayers relevant to microelectronics, electrocatalysis, and information storage and processing. While common strategies to functionalize Si interfaces exploit molecularly dissolved building blocks, only a handful number of studies have leveraged the structure-function relationships of π-aggregates to tune the electronic structures of hybrid monolayers at Si interfaces. Herein, we show that the semiconducting properties of n-type monolayers constructed on Si electrodes are intimately correlated to the initial aggregation state of π-conjugated chromophore precursors derived from bay-substituted perylene bisimide (PBI) units. Specifically, our study unravels that for n-type monolayers engineered using PBI π-aggregates, the cathodic reduction potentials required to inject negative charge carriers into the conduction bands can be stabilized by 295 mV through reversible switching of the maximum anodic potential (MAP) that is applied during the oxidative cycles (+0.5 or +1.5 V vs Ag/AgCl). This redox-assisted stabilization effect is not observed with n-type monolayers derived from molecularly dissolved PBI cores and monolayers featuring a low surface density of the redox-active probes. These findings unequivocally point to the crucial role played by PBI π-aggregates in modulating the conduction band energies of n-type monolayers where a high MAP of +1.5 V enables the formation of electronic trap states that facilitate electron injection when sweeping back to cathodic potentials. Because the structure-function relationships of PBI π-aggregates are shown to modulate the semiconducting properties of hybrid n-type monolayers constructed at Si interfaces, our results hold promising opportunities to develop redox-switchable monolayers for engineering nonvolatile electronic memory devices.
Collapse
Affiliation(s)
- Arindam Mukhopadhyay
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Kaixuan Liu
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Victor Paulino
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Jean-Hubert Olivier
- Department of Chemistry, University of Miami, Cox Science Center, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
4
|
Ashcraft A, Liu K, Mukhopadhyay A, Paulino V, Liu C, Bernard B, Husainy D, Phan T, Olivier J. A Molecular Strategy to Lock‐in the Conformation of a Perylene Bisimide‐Derived Supramolecular Polymer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adam Ashcraft
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Kaixuan Liu
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Arindam Mukhopadhyay
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Victor Paulino
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Chuan Liu
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Brianna Bernard
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Dalia Husainy
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Tina Phan
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Jean‐Hubert Olivier
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| |
Collapse
|
5
|
Ashcraft A, Liu K, Mukhopadhyay A, Paulino V, Liu C, Bernard B, Husainy D, Phan T, Olivier J. A Molecular Strategy to Lock‐in the Conformation of a Perylene Bisimide‐Derived Supramolecular Polymer. Angew Chem Int Ed Engl 2020; 59:7487-7493. [DOI: 10.1002/anie.201911780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Adam Ashcraft
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Kaixuan Liu
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Arindam Mukhopadhyay
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Victor Paulino
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Chuan Liu
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Brianna Bernard
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Dalia Husainy
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Tina Phan
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| | - Jean‐Hubert Olivier
- Department of ChemistryThe University of Miami 1301 Memorial Drive, Cox Science Building Coral Gables FL 33146 USA
| |
Collapse
|
6
|
Xiong W, Du L, Lo KC, Shi H, Takaya T, Iwata K, Chan WK, Phillips DL. Control of Electron Flow Direction in Photoexcited Cycloplatinated Complex Containing Conjugated Polymer-Single-Walled Carbon Nanotube Hybrids. J Phys Chem Lett 2018; 9:3819-3824. [PMID: 29940729 DOI: 10.1021/acs.jpclett.8b01713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conjugated polymers incorporated with cycloplatinated complexes (P1-Pt and P2-Pt) were used as dispersants for single-walled carbon nanotubes (SWCNTs). Significant changes in the UV-vis absorption spectra were observed after the formation of the polymer/SWCNT hybrids. Molecular dynamics (MD) simulations revealed the presence of a strong interaction between the cycloplatinated complex moieties and the SWCNT surface. The photoinduced electron transfer processes in these hybrids were strongly dependent on the type of the comonomer unit. Upon photoexcitation, the excited P1-Pt donates electrons to the SWCNT, while P2-Pt accepts electrons from the photoexcited SWCNT. These observations were supported by results from Raman and femtosecond time-resolved transient absorption spectroscopy experiments. The strong electronic interaction between the Pt complexes and the SWCNT gives rise to a new hybrid system that has a controllable photoinduced electron transfer flow, which are important in regulating the charge transport processes in SWCNT-based optoelectronic devices.
Collapse
Affiliation(s)
- Wenjuan Xiong
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Lili Du
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Kin Cheung Lo
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Haiting Shi
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Tomohisa Takaya
- Department of Chemistry, Faculty of Science , Gakushuin University , 1-5-1 Mejiro , Toshimaku, Tokyo 171-8588 , Japan
| | - Koichi Iwata
- Department of Chemistry, Faculty of Science , Gakushuin University , 1-5-1 Mejiro , Toshimaku, Tokyo 171-8588 , Japan
| | - Wai Kin Chan
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - David Lee Phillips
- Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| |
Collapse
|