1
|
Kerul L, Schrems M, Schmid A, Meli R, Becker CFW, Bello C. Semisynthesis of Homogeneous, Active Granulocyte Colony-Stimulating Factor Glycoforms. Angew Chem Int Ed Engl 2022; 61:e202206116. [PMID: 35853828 PMCID: PMC9804750 DOI: 10.1002/anie.202206116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/09/2023]
Abstract
Granulocyte colony stimulating factor (G-CSF) is a cytokine used to treat neutropenia. Different glycosylated and non-glycosylated variants of G-CSF for therapeutic application are currently generated by recombinant expression. Here, we describe our approaches to establish a first semisynthesis strategy to access the aglycone and O-glycoforms of G-CSF, thereby enabling the preparation of selectively and homogeneously post-translationally modified variants of this important cytokine. Eventually, we succeeded by combining selenocysteine ligation of a recombinantly produced N-terminal segment with a synthetic C-terminal part, transiently equipped with a side-chain-linked, photocleavable PEG moiety, at low concentration. The transient PEGylation enabled quantitative enzymatic elongation of the carbohydrate at Thr133. Overall, we were able to significantly reduce the problems related to the low solubility and the tendency to aggregate of the two protein segments, which allowed the preparation of four G-CSF variants that were successfully folded and demonstrated biological activity in cell proliferation assays.
Collapse
Affiliation(s)
- Lukas Kerul
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Maximilian Schrems
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Alanca Schmid
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Rajeshwari Meli
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Claudia Bello
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of Florencevia della Lastruccia 1350019Sesto Fiorentino (Florence)Italy
| |
Collapse
|
2
|
Kerul L, Schrems M, Schmid A, Meli R, Becker CF, Bello C. Semisynthesis of Homogeneous, Active Granulocyte Colony‐Stimulating Factor Glycoforms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lukas Kerul
- University of Vienna: Universitat Wien Chemistry AUSTRIA
| | | | - Alanca Schmid
- University of Vienna: Universitat Wien Chemistry AUSTRIA
| | | | - Christian F.W. Becker
- Universitat Wien Institute of Biological Chemistry Währinger Str. 38 1090 Vienna AUSTRIA
| | - Claudia Bello
- University of Florence: Universita degli Studi di Firenze Chemistry ITALY
| |
Collapse
|
3
|
Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Synthetic Homogeneous Glycoforms of the SARS‐CoV‐2 Spike Receptor‐Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Jing Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Wei Shangguan
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
| | - Cheng Li
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Tianlei Ying
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
- Institutes for Life Sciences School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangdong 510006 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 China
- Key Laboratory of Systems Biomedicine (Ministry of Education) Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
4
|
Ye F, Zhao J, Xu P, Liu X, Yu J, Shangguan W, Liu J, Luo X, Li C, Ying T, Wang J, Yu B, Wang P. Synthetic Homogeneous Glycoforms of the SARS-CoV-2 Spike Receptor-Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies. Angew Chem Int Ed Engl 2021; 60:12904-12910. [PMID: 33709491 PMCID: PMC8251112 DOI: 10.1002/anie.202100543] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/23/2021] [Indexed: 12/16/2022]
Abstract
SARS‐CoV‐2 attaches to its host receptor, angiotensin‐converting enzyme 2 (ACE2), via the receptor‐binding domain (RBD) of the spike protein. The RBD glycoprotein is a critical target for the development of neutralizing antibodies and vaccines against SARS‐CoV‐2. However, the high heterogeneity of RBD glycoforms may lead to an incomplete neutralization effect and impact the immunogenic integrity of RBD‐based vaccines. Investigating the role of different carbohydrate domains is of paramount importance. Unfortunately, there is no viable method for preparing RBD glycoproteins with structurally defined glycans. Herein we describe a highly efficient and scalable strategy for the preparation of six glycosylated RBDs bearing defined structure glycoforms at T323, N331, and N343. A combination of modern oligosaccharide, peptide synthesis and recombinant protein engineering provides a robust route to decipher carbohydrate structure‐function relationships.
Collapse
Affiliation(s)
- Farong Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xinliang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Shangguan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiazhi Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaosheng Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng Li
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianlei Ying
- Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.,Institutes for Life Sciences, School of Medicine and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Qu Q, Gao S, Wu F, Zhang M, Li Y, Zhang L, Bierer D, Tian C, Zheng J, Liu L. Synthesis of Disulfide Surrogate Peptides Incorporating Large‐Span Surrogate Bridges Through a Native‐Chemical‐Ligation‐Assisted Diaminodiacid Strategy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qian Qu
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Shuai Gao
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Fangming Wu
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei 230031 China
| | - Meng‐Ge Zhang
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Ying Li
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Long‐Hua Zhang
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Donald Bierer
- Bayer AGDepartment of Medicinal Chemistry Aprather Weg 18A 42096 Wuppertal Germany
| | - Chang‐Lin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei 230031 China
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Ji‐Shen Zheng
- School of Life SciencesHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230027 China
| | - Lei Liu
- Tsinghua-Peking Center for Life SciencesMinistry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical BiologyCenter for Synthetic and Systems BiologyDepartment of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
6
|
Qu Q, Gao S, Wu F, Zhang MG, Li Y, Zhang LH, Bierer D, Tian CL, Zheng JS, Liu L. Synthesis of Disulfide Surrogate Peptides Incorporating Large-Span Surrogate Bridges Through a Native-Chemical-Ligation-Assisted Diaminodiacid Strategy. Angew Chem Int Ed Engl 2020; 59:6037-6045. [PMID: 32060988 DOI: 10.1002/anie.201915358] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/19/2020] [Indexed: 12/17/2022]
Abstract
The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide-containing peptides. However, peptides incorporating large-span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)-assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible-to-obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X-ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.
Collapse
Affiliation(s)
- Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuai Gao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fangming Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Meng-Ge Zhang
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Ying Li
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Hua Zhang
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Donald Bierer
- Bayer AG, Department of Medicinal Chemistry, Aprather Weg 18A, 42096, Wuppertal, Germany
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China.,School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Ji-Shen Zheng
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Yoshiya T, Tsuda S, Masuda S. Development of Trityl Group Anchored Solubilizing Tags for Peptide and Protein Synthesis. Chembiochem 2019; 20:1906-1913. [DOI: 10.1002/cbic.201900105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shugo Tsuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shun Masuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| |
Collapse
|
8
|
Loibl SF, Dallmann A, Hennig K, Juds C, Seitz O. Features of Auxiliaries That Enable Native Chemical Ligation beyond Glycine and Cleavage via Radical Fragmentation. Chemistry 2018; 24:3623-3633. [PMID: 29334413 DOI: 10.1002/chem.201705927] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 12/26/2022]
Abstract
Native chemical ligation (NCL) is an invaluable tool in the total chemical synthesis of proteins. Ligation auxiliaries overcome the requirement for cysteine. However, the reported auxiliaries remained limited to glycine-containing ligation sites and the acidic conditions applied for cleavage of the typically applied N-benzyl-type linkages promote side reactions. With the aim to improve upon both ligation and cleavage, we systematically investigated alternative ligation scaffolds that challenge the N-benzyl dogma. The study revealed that auxiliary-mediated peptide couplings are fastest when the ligation proceeds via 5-membered rather than 6-membered rings. Substituents in α-position of the amine shall be avoided. We observed, perhaps surprisingly, that additional β-substituents accelerated the ligation conferred by the β-mercaptoethyl scaffold. We also describe a potentially general means to remove ligation auxiliaries by treatment with an aqueous solution of triscarboxyethylphosphine (TCEP) and morpholine at pH 8.5. NMR analysis of a 13 C-labeled auxiliary showed that cleavage most likely proceeds through a radical-triggered oxidative fragmentation. High ligation rates provided by β-substituted 2-mercaptoethyl scaffolds, their facile introduction as well as the mildness of the cleavage reaction are attractive features for protein synthesis beyond cysteine and glycine ligation sites.
Collapse
Affiliation(s)
- Simon F Loibl
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Andre Dallmann
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Kathleen Hennig
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Carmen Juds
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
9
|
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Easy-to-Attach/Detach Solubilizing-Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein. Angew Chem Int Ed Engl 2018; 57:2105-2109. [DOI: 10.1002/anie.201711546] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hiroyuki Ishiba
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Kumiko Yoshizawa-Kumagaye
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
10
|
Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Easy-to-Attach/Detach Solubilizing-Tag-Aided Chemical Synthesis of an Aggregative Capsid Protein. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shugo Tsuda
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| | | | - Hiroyuki Ishiba
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Kumiko Yoshizawa-Kumagaye
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Hideki Nishio
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
- Graduate School of Science; Osaka University; Toyonaka-shi Osaka 560-0043 Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences; Kyoto University; Sakyo-ku Kyoto 606-8501 Japan
| | - Taku Yoshiya
- Peptide Institute, Inc.; Ibaraki Osaka 567-0085 Japan
| |
Collapse
|
11
|
Chai H, Le Mai Hoang K, Vu MD, Pasunooti K, Liu CF, Liu XW. N
-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N
-Glycopeptide Synthesis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Chai
- School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Kim Le Mai Hoang
- School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Minh Duy Vu
- School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| | - Kalyan Pasunooti
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences; Nanyang Technological University; 60 Nanyang Drive Singapore 637551 Singapore
| | - Xue-Wei Liu
- School of Physical and Mathematical Sciences; Nanyang Technological University; 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
12
|
Chai H, Le Mai Hoang K, Vu MD, Pasunooti K, Liu CF, Liu XW. N-Linked Glycosyl Auxiliary-Mediated Native Chemical Ligation on Aspartic Acid: Application towards N-Glycopeptide Synthesis. Angew Chem Int Ed Engl 2016; 55:10363-7. [PMID: 27444333 DOI: 10.1002/anie.201605597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 12/20/2022]
Abstract
A practical approach towards N-glycopeptide synthesis using an auxiliary-mediated dual native chemical ligation (NCL) has been developed. The first NCL connects an N-linked glycosyl auxiliary to the thioester side chain of an N-terminal aspartate oligopeptide. This intermediate undergoes a second NCL with a C-terminal thioester oligopeptide. Mild cleavage provides the desired N-glycopeptide.
Collapse
Affiliation(s)
- Hua Chai
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Kim Le Mai Hoang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Minh Duy Vu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Kalyan Pasunooti
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Xue-Wei Liu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
13
|
Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Solid-State NMR of PEGylated Proteins. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Tommaso Martelli
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| | - Tatiana Kozyreva
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| | - Caterina Bernacchioni
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| |
Collapse
|
14
|
Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Solid-State NMR of PEGylated Proteins. Angew Chem Int Ed Engl 2016; 55:2446-9. [PMID: 26756539 DOI: 10.1002/anie.201510148] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 11/10/2022]
Abstract
PEGylated proteins are widely used in biomedicine but, in spite of their importance, no atomic-level information is available since they are generally resistant to structural characterization approaches. PEGylated proteins are shown here to yield highly resolved solid-state NMR spectra, which allows assessment of the structural integrity of proteins when PEGylated for therapeutic or diagnostic use.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Tommaso Martelli
- Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Tatiana Kozyreva
- Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Caterina Bernacchioni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy. .,Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
15
|
Loibl SF, Harpaz Z, Seitz O. A Type of Auxiliary for Native Chemical Peptide Ligation beyond Cysteine and Glycine Junctions. Angew Chem Int Ed Engl 2015; 54:15055-9. [DOI: 10.1002/anie.201505274] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/17/2015] [Indexed: 11/11/2022]
|
16
|
Loibl SF, Harpaz Z, Seitz O. Ein Auxiliartyp für die native chemische Peptidligation jenseits von Cystein und Glycin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Weller CE, Chatterjee C. All about that Amide Bond: The Sixth Chemical Protein Synthesis (CPS) Meeting. Chembiochem 2015; 16:2531-6. [PMID: 26457983 PMCID: PMC4749268 DOI: 10.1002/cbic.201500473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/11/2022]
Abstract
Endless potential: The sixth Chemical Protein Synthesis Meeting, held recently in St. Augustine, Florida, showed the potential of peptide and protein chemistry when applied toward understanding and controlling complex biological processes. This report highlights the diverse and cutting-edge protein chemistry presented at the meeting.
Collapse
Affiliation(s)
- Caroline E Weller
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA.
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA.
| |
Collapse
|