1
|
Roy S, Adury VSS, Rao A, Roy S, Mukherjee A, Pillai PP. Electrostatically Directed Long-Range Self-Assembly of Nucleotides with Cationic Nanoparticles To Form Multifunctional Bioplasmonic Networks. Angew Chem Int Ed Engl 2022; 61:e202203924. [PMID: 35506473 DOI: 10.1002/anie.202203924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 12/12/2022]
Abstract
Precise control over interparticle interactions is essential to retain the functions of individual components in a self-assembled superstructure. Here, we report the design of a multifunctional bioplasmonic network via an electrostatically directed self-assembly process involving adenosine 5'-triphosphate (ATP). The present study unveils the ability of ATP to undergo a long-range self-assembly in the presence of cations and gold nanoparticles (AuNP). Modelling and NMR studies gave a qualitative insight into the major interactions driving the bioplasmonic network formation. ATP-Ca2+ coordination helps in regulating the electrostatic interaction, which is crucial in transforming an uncontrolled precipitation into a kinetically controlled aggregation process. Remarkably, ATP and AuNP retained their inherent properties in the multifunctional bioplasmonic network. The generality of electrostatically directed self-assembly process was extended to different nucleotide-nanoparticle systems.
Collapse
Affiliation(s)
- Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Venkata Sai Sreyas Adury
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Anish Rao
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Soumendu Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| |
Collapse
|
2
|
Roy S, Adury VSS, Rao A, Roy S, Mukherjee A, Pillai PP. Electrostatically Directed Long‐Range Self‐Assembly of Nucleotides with Cationic Nanoparticles To Form Multifunctional Bioplasmonic Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumit Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Venkata Sai Sreyas Adury
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Anish Rao
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Soumendu Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Arnab Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Pramod P. Pillai
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| |
Collapse
|
3
|
Zeng F, Chen X, Xiao G, Li H, Xia S, Wang J. A Bioinspired Ultratough Multifunctional Mica-Based Nanopaper with 3D Aramid Nanofiber Framework as an Electrical Insulating Material. ACS NANO 2020; 14:611-619. [PMID: 31891484 DOI: 10.1021/acsnano.9b07192] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid development of modern electrical equipment toward miniaturization and high power puts forward stringent requirements to the mechanical reliability, dielectric property, and heat resistance of electrical insulating materials. Simultaneous integration of all these properties for mica-based materials remains unresolved. Herein, inspired by the three-dimensional (3D) chitin nanofiber framework within the layered architecture of natural nacre, we report a large-area layered mica-based nanopaper containing a 3D aramid nanofiber framework, which is prepared by a sol-gel-film transformation process. The coupling of 3D aramid nanofiber framework and oriented mica nanoplatelets imparts the nanopaper with good mechanical strength, particularly outstanding ductility (close to 80%) and toughness (up to 109 MJ m-3), which are 4-240 and 6-220 times higher than those of all other nacre-mimetics. Meanwhile, the excellent mechanical properties are integrated with high dielectric strength (164 kV mm-1), excellent heat resistance (Tg = 268 °C), good solvent resistance, and nonflammability, much better than conventional mica-based materials. Additionally, we successfully demonstrate its continuous production in the form of nanotape. The fabulous multiproperty combination and continuous production capability render the mica-based nanopaper a very promising electrical insulating material in miniaturized high-power electrical equipment.
Collapse
Affiliation(s)
- Fanzhan Zeng
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
- College of Packaging and Material Engineering , Hunan University of Technology , Zhuzhou 412007 , China
| | - Xianhong Chen
- College of Metallurgy and Material Engineering , Hunan University of Technology , Zhuzhou 412007 , China
| | - Guang Xiao
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
| | - Hao Li
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
| | - Shuang Xia
- Institute of Chemical Materials , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Jianfeng Wang
- College of Materials Science and Engineering , Hunan University , Changsha 410082 , China
| |
Collapse
|
4
|
Qu G, Li Y, Yu Y, Huang Y, Zhang W, Zhang H, Liu Z, Kong T. Spontaneously Regenerative Tough Hydrogels. Angew Chem Int Ed Engl 2019; 58:10951-10955. [DOI: 10.1002/anie.201904932] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/24/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Gang Qu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yang Li
- Department of Gastrointestinal SurgeryShenzhen People's, HospitalSecond Clinical Medical College of Jinan UniversityFirst Affiliated Hospital of Southern University of Science and Technology Shenzhen 518020 China
| | - Yafeng Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yuxing Huang
- School of Materials Science and EngineeringNanchang University Nanchang Jiangxi 330031 China
| | - Wei Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen Guangdong 518060 China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| |
Collapse
|
5
|
Qu G, Li Y, Yu Y, Huang Y, Zhang W, Zhang H, Liu Z, Kong T. Spontaneously Regenerative Tough Hydrogels. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Qu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yang Li
- Department of Gastrointestinal SurgeryShenzhen People's, HospitalSecond Clinical Medical College of Jinan UniversityFirst Affiliated Hospital of Southern University of Science and Technology Shenzhen 518020 China
| | - Yafeng Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Yuxing Huang
- School of Materials Science and EngineeringNanchang University Nanchang Jiangxi 330031 China
| | - Wei Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen University Shenzhen Guangdong 518060 China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen University Shenzhen 518060 China
| |
Collapse
|
6
|
Kolberg A, Wenzel C, Hackenstrass K, Schwarzl R, Rüttiger C, Hugel T, Gallei M, Netz RR, Balzer BN. Opposing Temperature Dependence of the Stretching Response of Single PEG and PNiPAM Polymers. J Am Chem Soc 2019; 141:11603-11613. [DOI: 10.1021/jacs.9b04383] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Adrianna Kolberg
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 23a, 79104 Freiburg, Germany
| | - Christiane Wenzel
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 23a, 79104 Freiburg, Germany
| | - Klara Hackenstrass
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 23a, 79104 Freiburg, Germany
| | - Richard Schwarzl
- Department Institute of Theoretical Bio- and Soft Matter Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Rüttiger
- Ernst-Berl-Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 23a, 79104 Freiburg, Germany
- Cluster of Excellence livMatS@FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Markus Gallei
- Ernst-Berl-Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
- Organic Macromolecular Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany
| | - Roland R. Netz
- Department Institute of Theoretical Bio- and Soft Matter Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Bizan N. Balzer
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 23a, 79104 Freiburg, Germany
- Cluster of Excellence livMatS@FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
7
|
Gai G, Liu L, Li C, Bose RK, Li D, Guo N, Kong B. A Tough Metal‐Coordinated Elastomer: A Fatigue‐Resistant, Notch‐Insensitive Material with an Excellent Self‐Healing Capacity. Chempluschem 2019; 84:432-440. [DOI: 10.1002/cplu.201900095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/02/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Guangjie Gai
- Institute of Advanced Energy Materials and Chemistry School of Chemistry and Pharmaceutical Engineering State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Libin Liu
- Institute of Advanced Energy Materials and Chemistry School of Chemistry and Pharmaceutical Engineering State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Cheng‐Hui Li
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical EngineeringNanjing University Nanjing 210093 P. R. China
| | - Ranjita K. Bose
- Engineering and Technology Institute Groningen (ENTEG)University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Dong Li
- Institute of Advanced Energy Materials and Chemistry School of Chemistry and Pharmaceutical Engineering State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Ning Guo
- Institute of Advanced Energy Materials and Chemistry School of Chemistry and Pharmaceutical Engineering State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Biao Kong
- Department of Chemistry Shanghai Key Lab of Molecular Catalysis and Innovative MaterialsiChEMFudan University Shanghai 200433 P. R. China
| |
Collapse
|
8
|
Song Y, Liu Y, Qi T, Li GL. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen-Bonding Interactions. Angew Chem Int Ed Engl 2018; 57:13838-13842. [PMID: 30144244 DOI: 10.1002/anie.201807622] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/04/2018] [Indexed: 01/06/2023]
Abstract
A biomimetic (titin protein molecular structure) strategy is reported for preparing transparent and healable elastomers featuring supertoughness (345 MJ m-3 ) and high tensile strength (44 MPa) after self-healing enabled by hierarchical (single, double, and quadruple) hydrogen-bonding moieties in the polymer backbone. The rigid domain containing hierarchical H-bonds formed with urethane, urea, and 2-ureido-4[1H]-pyrimidinone groups leads to a durable network structure that has enhanced mechanical properties and is also dynamic for rapid self-healing. Healable polymers with hierarchical hydrogen-bonding interactions show excellent recoverability and high energy dissipation owing to the durable interaction between polymer chains. This biomimetic strategy of using hierarchical hydrogen bonds as building blocks is an alternative approach for obtaining dynamic, strong, yet smart self-healing polymers for heavy-duty protection materials and wearable electronics.
Collapse
Affiliation(s)
- Yan Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan Liu
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tao Qi
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guo Liang Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Song Y, Liu Y, Qi T, Li GL. Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen‐Bonding Interactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yan Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuan Liu
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
| | - Tao Qi
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guo Liang Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production TechnologyInstitute of Process EngineeringChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
10
|
Chen K, Zhang S, Li A, Tang X, Li L, Guo L. Bioinspired Interfacial Chelating-like Reinforcement Strategy toward Mechanically Enhanced Lamellar Materials. ACS NANO 2018; 12:4269-4279. [PMID: 29697956 DOI: 10.1021/acsnano.7b08671] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many biological organisms usually derived from the ordered assembly of heterogeneous, hierarchical inorganic/organic constituents exhibit outstanding mechanical integration, but have proven to be difficult to produce the combination of excellent mechanical properties, such as strength, toughness, and light weight, by merely mimicking their component and structural characteristics. Herein, inspired by biologically strong chelating interactions of phytic acid (PA) or IP6 in many biomaterials, we present a biologically interfacial chelating-like reinforcement (BICR) strategy for fabrication of a highly dense ordered "brick-and-mortar" microstructure by incorporating tiny amounts of a natural chelating agent ( e. g., PA) into the interface or the interlamination of a material ( e. g., graphene oxide (GO)), which shows joint improvement in hardness (∼41.0%), strength (∼124.1%), maximum Young's modulus (∼134.7%), and toughness (∼118.5%) in the natural environment. Besides, for different composite matrix systems and artificial chelating agents, the BICR strategy has been proven successful for greatly enhancing their mechanical properties, which is superior to many previous reinforcing approaches. This point can be mainly attributed to the stronger noncovalent cross-linking interactions such as dense hydrogen bonds between the richer phosphate (hydroxyl) groups on its cyclohexanehexol ring and active sites of GO, giving rise to the larger energy dissipation at its hybrid interfaces. It is also simple and environmentally friendly for further scale-up fabrication and can be readily extended to other material systems, which opens an advanced reinforcement route to construct structural materials with high mechanical performance in an efficient way for practical applications.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedial Engineering , Beihang University (BUAA) , Beijing 100191 , China
- School of Physics and Nuclear Energy Engineering , Beihang University (BUAA) , Beijing 100191 , China
| | - Shuhao Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedial Engineering , Beihang University (BUAA) , Beijing 100191 , China
| | - Anran Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedial Engineering , Beihang University (BUAA) , Beijing 100191 , China
| | - Xuke Tang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedial Engineering , Beihang University (BUAA) , Beijing 100191 , China
| | - Lidong Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedial Engineering , Beihang University (BUAA) , Beijing 100191 , China
| | - Lin Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedial Engineering , Beihang University (BUAA) , Beijing 100191 , China
| |
Collapse
|
11
|
Yu Z, Liu J, Tan CSY, Scherman OA, Abell C. Supramolecular Nested Microbeads as Building Blocks for Macroscopic Self-Healing Scaffolds. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ziyi Yu
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Ji Liu
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Cindy Soo Yun Tan
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
- Faculty of Applied Sciences; Universiti Teknologi MARA; 94300 Kota Samarahan Sarawak Malaysia
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Chris Abell
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
12
|
Yu Z, Liu J, Tan CSY, Scherman OA, Abell C. Supramolecular Nested Microbeads as Building Blocks for Macroscopic Self-Healing Scaffolds. Angew Chem Int Ed Engl 2018; 57:3079-3083. [PMID: 29377541 PMCID: PMC5915745 DOI: 10.1002/anie.201711522] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Indexed: 12/13/2022]
Abstract
The ability to construct self‐healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self‐healing scaffolds. The core–shell microbeads remain in an “inert” state owing to the isolation of a pair of complementary polymers in a form that can be stored as an aqueous suspension. An annealing process after injection effectively induces the re‐construction of the microbead units, leading to supramolecular gelation in a preconfigured shape. The resulting macroscopic scaffold is dynamically stable, displaying self‐recovery in a self‐healing electronic conductor. This strategy of using the supramolecular assembled nested microbeads as building blocks represents an alternative to injectable hydrogel systems, and shows promise in the field of structural biomaterials and flexible electronics.
Collapse
Affiliation(s)
- Ziyi Yu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ji Liu
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cindy Soo Yun Tan
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Faculty of Applied Sciences, Universiti Teknologi MARA, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
13
|
Han K, Go D, Tigges T, Rahimi K, Kuehne AJC, Walther A. Social Self-Sorting of Colloidal Families in Co-Assembling Microgel Systems. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612196] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kang Han
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Dennis Go
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Thomas Tigges
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry; Albert-Ludwigs-University Freiburg; Stefan-Meier Strasse 31 71096 Freiburg Germany
| |
Collapse
|
14
|
Han K, Go D, Tigges T, Rahimi K, Kuehne AJC, Walther A. Social Self-Sorting of Colloidal Families in Co-Assembling Microgel Systems. Angew Chem Int Ed Engl 2017; 56:2176-2182. [DOI: 10.1002/anie.201612196] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Han
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Dennis Go
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Thomas Tigges
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Alexander J. C. Kuehne
- DWI-Leibniz-Institute for Interactive Materials; Forckenbeckstrasse 50 52074 Aachen Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry; Albert-Ludwigs-University Freiburg; Stefan-Meier Strasse 31 71096 Freiburg Germany
| |
Collapse
|