1
|
Chaudhuri R, Prasanth T, Biswas D, Mandal S, Dash J. Combating multidrug-resistance in S. pneumoniae: a G-quadruplex binding inhibitor of efflux pump and its bio-orthogonal assembly. NAR MOLECULAR MEDICINE 2024; 1:ugae005. [PMID: 38694210 PMCID: PMC11059089 DOI: 10.1093/narmme/ugae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Antibiotic resistance poses a significant global health threat, necessitating innovative strategies to combat multidrug-resistant bacterial infections. Streptococcus pneumoniae, a pathogen responsible for various infections, harbors highly conserved DNA quadruplexes in genes linked to its pathogenesis. In this study, we introduce a novel approach to counter antibiotic resistance by stabilizing G-quadruplex structures within the open reading frames of key resistance-associated genes (pmrA, recD and hsdS). We synthesized An4, a bis-anthracene derivative, using Cu(I)-catalyzed azide-alkyne cycloaddition, which exhibited remarkable binding and stabilization of the G-quadruplex in the pmrA gene responsible for drug efflux. An4 effectively permeated multidrug-resistant S. pneumoniae strains, leading to a substantial 12.5-fold reduction in ciprofloxacin resistance. Furthermore, An4 downregulated pmrA gene expression, enhancing drug retention within bacterial cells. Remarkably, the pmrA G-quadruplex cloned into the pET28a(+) plasmid transformed into Escherichia coli BL21 cells can template Cu-free bio-orthogonal synthesis of An4 from its corresponding alkyne and azide fragments. This study presents a pioneering strategy to combat antibiotic resistance by genetically reducing drug efflux pump expression through G-quadruplex stabilization, offering promising avenues for addressing antibiotic resistance.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Thumpati Prasanth
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Debasmita Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| | - Subhranshu Mandal
- Laboratory Medicine, Chittaranjan National Cancer Institute, Kolkata, West Bengal 700156, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, West-Bengal 700032, India
| |
Collapse
|
2
|
Sousa-Castillo A, Mariño-López A, Puértolas B, Correa-Duarte MA. Nanostructured Heterogeneous Catalysts for Bioorthogonal Reactions. Angew Chem Int Ed Engl 2023; 62:e202215427. [PMID: 36479797 DOI: 10.1002/anie.202215427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Bioorthogonal chemistry has inspired a new subarea of chemistry providing a powerful tool to perform novel biocompatible chemospecific reactions in living systems. Following the premise that they do not interfere with biological functions, bioorthogonal reactions are increasingly applied in biomedical research, particularly with respect to genetic encoding systems, fluorogenic reactions for bioimaging, and cancer therapy. This Minireview compiles recent advances in the use of heterogeneous catalysts for bioorthogonal reactions. The synthetic strategies of Pd-, Au-, and Cu-based materials, their applicability in the activation of caged fluorophores and prodrugs, and the possibilities of using external stimuli to release therapeutic substances at a specific location in a diseased tissue are discussed. Finally, we highlight frontiers in the field, identifying challenges, and propose directions for future development in this emerging field.
Collapse
|
3
|
Nellinger S, Rapp MA, Southan A, Wittmann V, Kluger PJ. An Advanced 'clickECM' That Can be Modified by the Inverse-Electron-Demand Diels-Alder Reaction. Chembiochem 2021; 23:e202100266. [PMID: 34343379 PMCID: PMC9291553 DOI: 10.1002/cbic.202100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017, 52, 159-170), we demonstrated the modification of an ECM with azido groups, which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here, we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene), which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove that the functional groups do not influence cellular behavior. Thus, this new material has great potential for use as a biomaterial, which can be individually modified in a wide range of applications.
Collapse
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, School of Applied Chemistry, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Mareike A Rapp
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Petra J Kluger
- Reutlingen Research Institute, Reutlingen University, School of Applied Chemistry, Alteburgstr. 150, 72762, Reutlingen, Germany
| |
Collapse
|
4
|
de Moliner F, Knox K, Gordon D, Lee M, Tipping WJ, Geddis A, Reinders A, Ward JM, Oparka K, Vendrell M. A Palette of Minimally Tagged Sucrose Analogues for Real-Time Raman Imaging of Intracellular Plant Metabolism. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:7715-7720. [PMID: 38505234 PMCID: PMC10946860 DOI: 10.1002/ange.202016802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy.
Collapse
Affiliation(s)
| | - Kirsten Knox
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University ofEdinburghUK
| | - Martin Lee
- Cancer Research (UK) Edinburgh CentreThe University of EdinburghUK
| | - William J. Tipping
- EaStCHEM School of ChemistryThe University of EdinburghUK
- Centre for Molecular NanometrologyUniversity of StrathclydeUK
| | - Ailsa Geddis
- Centre for Inflammation ResearchThe University ofEdinburghUK
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | - Anke Reinders
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - John M. Ward
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - Karl Oparka
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University ofEdinburghUK
| |
Collapse
|
5
|
de Moliner F, Knox K, Gordon D, Lee M, Tipping WJ, Geddis A, Reinders A, Ward JM, Oparka K, Vendrell M. A Palette of Minimally Tagged Sucrose Analogues for Real-Time Raman Imaging of Intracellular Plant Metabolism. Angew Chem Int Ed Engl 2021; 60:7637-7642. [PMID: 33491852 PMCID: PMC8048481 DOI: 10.1002/anie.202016802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 12/20/2022]
Abstract
Sucrose is the main saccharide used for long-distance transport in plants and plays an essential role in energy metabolism; however, there are no analogues for real-time imaging in live cells. We have optimised a synthetic approach to prepare sucrose analogues including very small (≈50 Da or less) Raman tags in the fructose moiety. Spectroscopic analysis identified the alkyne-tagged compound 6 as a sucrose analogue recognised by endogenous transporters in live cells and with higher Raman intensity than other sucrose derivatives. Herein, we demonstrate the application of compound 6 as the first optical probe to visualise real-time uptake and intracellular localisation of sucrose in live plant cells using Raman microscopy.
Collapse
Affiliation(s)
| | - Kirsten Knox
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Doireann Gordon
- Centre for Inflammation ResearchThe University ofEdinburghUK
| | - Martin Lee
- Cancer Research (UK) Edinburgh CentreThe University of EdinburghUK
| | - William J. Tipping
- EaStCHEM School of ChemistryThe University of EdinburghUK
- Centre for Molecular NanometrologyUniversity of StrathclydeUK
| | - Ailsa Geddis
- Centre for Inflammation ResearchThe University ofEdinburghUK
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | - Anke Reinders
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - John M. Ward
- Department of Plant and Microbial BiologyUniversity of MinnesotaUSA
| | - Karl Oparka
- Institute of Molecular Plant SciencesThe University of EdinburghUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University ofEdinburghUK
| |
Collapse
|
6
|
Pinto‐Pacheco B, Carbery WP, Khan S, Turner DB, Buccella D. Fluorescence Quenching Effects of Tetrazines and Their Diels–Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Brismar Pinto‐Pacheco
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - William P. Carbery
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - Sameer Khan
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| | - Daniel B. Turner
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
- Current address: Micron School of Materials Science and Engineering Boise State University Boise ID 83725 USA
| | - Daniela Buccella
- Department of Chemistry New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
7
|
Pinto-Pacheco B, Carbery WP, Khan S, Turner DB, Buccella D. Fluorescence Quenching Effects of Tetrazines and Their Diels-Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew Chem Int Ed Engl 2020; 59:22140-22149. [PMID: 33245600 DOI: 10.1002/anie.202008757] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Inverse electron demand Diels-Alder reactions between s-tetrazines and strained dienophiles have numerous applications in fluorescent labeling of biomolecules. Herein, we investigate the effect of the dienophile on the fluorescence enhancement obtained upon reaction with a tetrazine-quenched fluorophore and study the possible mechanisms of fluorescence quenching by both the tetrazine and its reaction products. The dihydropyridazine obtained from reaction with a strained cyclooctene shows a residual fluorescence quenching effect, greater than that exerted by the pyridazine arising from reaction with the analogous alkyne. Linear and ultrabroadband two-dimensional electronic spectroscopy experiments reveal that resonance energy transfer is the mechanism responsible for the fluorescence quenching effect of tetrazines, whereas a mechanism involving more intimate electronic coupling, likely photoinduced electron transfer, is responsible for the quenching effect of the dihydropyridazine. These studies uncover parameters that can be tuned to maximize fluorogenic efficiency in bioconjugation reactions and reveal that strained alkynes are better reaction partners for achieving maximum contrast ratio.
Collapse
Affiliation(s)
- Brismar Pinto-Pacheco
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - William P Carbery
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Sameer Khan
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.,Current address: Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
| | - Daniela Buccella
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
8
|
Galeta J, Dzijak R, Obořil J, Dračínský M, Vrabel M. A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chemistry 2020; 26:9945-9953. [PMID: 32339341 PMCID: PMC7497033 DOI: 10.1002/chem.202001290] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 12/20/2022]
Abstract
Fluorescent probes that light-up upon reaction with complementary bioorthogonal reagents are superior tools for no-wash fluorogenic bioimaging applications. In this work, a thorough study is presented on a set of seventeen structurally diverse coumarin-tetrazine probes that produce fluorescent dyes with exceptional turn-on ratios when reacted with trans-cyclooctene (TCO) and bicyclononyne (BCN) dienophiles. In general, formation of the fully aromatic pyridazine-containing dyes resulting from the reaction with BCN was found superior in terms of fluorogenicity. However, evaluation of the probes in cellular imaging experiments revealed that other factors, such as reaction kinetics and good cell permeability, prevail over the fluorescence turn-on properties. The best compound identified in this study showed excellent performance in live cell-labeling experiments and enabled no-wash fluorogenic imaging on a timescale of seconds.
Collapse
Affiliation(s)
- Juraj Galeta
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Jan Obořil
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 2166 10PragueCzech Republic
| |
Collapse
|
9
|
Dou Y, Wang Y, Duan Y, Liu B, Hu Q, Shen W, Sun H, Zhu Q. Color‐Tunable Light‐up Bioorthogonal Probes for In Vivo Two‐Photon Fluorescence Imaging. Chemistry 2020; 26:4576-4582. [DOI: 10.1002/chem.201905183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/30/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Yandong Dou
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yajun Wang
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yukun Duan
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Science Drive 4 117585 Singapore Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Science Drive 4 117585 Singapore Singapore
| | - Qinglian Hu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Wei Shen
- Department of General SurgeryJinhua Municipal Central Hospital Jinhua 321000 P. R. China
| | - Hongyan Sun
- Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Qing Zhu
- College of Biotechnology and BioengineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
10
|
Wesalo JS, Luo J, Morihiro K, Liu J, Deiters A. Phosphine-Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. Chembiochem 2020; 21:141-148. [PMID: 31664790 PMCID: PMC6980333 DOI: 10.1002/cbic.201900464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/03/2019] [Indexed: 11/06/2022]
Abstract
The Staudinger reduction and its variants have exceptional compatibility with live cells but can be limited by slow kinetics. Herein we report new small-molecule triggers that turn on proteins through a Staudinger reduction/self-immolation cascade with substantially improved kinetics and yields. We achieved this through site-specific incorporation of a new set of azidobenzyloxycarbonyl lysine derivatives in mammalian cells. This approach allowed us to activate proteins by adding a nontoxic, bioorthogonal phosphine trigger. We applied this methodology to control a post-translational modification (SUMOylation) in live cells, using native modification machinery. This work significantly improves the rate, yield, and tunability of the Staudinger reduction-based activation, paving the way for its application in other proteins and organisms.
Collapse
Affiliation(s)
- Joshua S. Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Ji Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Kunihiko Morihiro
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (USA)
| |
Collapse
|
11
|
Hong S, Sahai-Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single-Step Metabolic Labeling with Fluorophore-Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019; 58:14327-14333. [PMID: 31295389 PMCID: PMC6820142 DOI: 10.1002/anie.201907410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Dynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two-step labeling sequence is required, which suffers from the tissue-penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogues of the nucleotide sugars. Injecting fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.
Collapse
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pankaj Sahai-Hernandez
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | | | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
12
|
Hong S, Sahai‐Hernandez P, Chapla DG, Moremen KW, Traver D, Wu P. Direct Visualization of Live Zebrafish Glycans via Single‐Step Metabolic Labeling with Fluorophore‐Tagged Nucleotide Sugars. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Senlian Hong
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Pankaj Sahai‐Hernandez
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | | | - Kelley W. Moremen
- Complex Carbohydrate Research Center University of Georgia Athens GA 30602 USA
| | - David Traver
- Department of Cellular and Molecular Medicine University of California at San Diego La Jolla CA 92037 USA
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
13
|
Wen X, Yuan B, Zhang J, Meng X, Guo Q, Li L, Li Z, Jiang H, Wang K. Enhanced visualization of cell surface glycans via a hybridization chain reaction. Chem Commun (Camb) 2019; 55:6114-6117. [DOI: 10.1039/c9cc02069a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We apply a DNA hybridization chain reaction (HCR) to achieve sensitively amplified imaging of cell surface glycosylation.
Collapse
Affiliation(s)
- Xiaohong Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Baoyin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Junxun Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Xiangxian Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Lie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Zenghui Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Huishan Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
14
|
Mao W, Shi W, Li J, Su D, Wang X, Zhang L, Pan L, Wu X, Wu H. Organocatalytic and Scalable Syntheses of Unsymmetrical 1,2,4,5-Tetrazines by Thiol-Containing Promotors. Angew Chem Int Ed Engl 2018; 58:1106-1109. [PMID: 30488591 DOI: 10.1002/anie.201812550] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Indexed: 02/05/2023]
Abstract
Despite the growing application of tetrazine bioorthogonal chemistry, it is still challenging to access tetrazines conveniently from easily available materials. Described here is the de novo formation of tetrazine from nitriles and hydrazine hydrate using a broad array of thiol-containing catalysts, including peptides. Using this facile methodology, the syntheses of 14 unsymmetric tetrazines, containing a range of reactive functional groups, on the gram scale were achieved with satisfactory yields. Using tetrazine methylphosphonate as a building block, a highly efficient Horner-Wadsworth-Emmons reaction was developed for further derivatization under mild reaction conditions. Tetrazine probes with diverse functions can be scalably produced in yields of 87-93 %. This methodology may facilitate the widespread application of tetrazine bioorthogonal chemistry.
Collapse
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Wei Shi
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Dunyan Su
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaomeng Wang
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Lyuye Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
15
|
Mao W, Shi W, Li J, Su D, Wang X, Zhang L, Pan L, Wu X, Wu H. Organocatalytic and Scalable Syntheses of Unsymmetrical 1,2,4,5‐Tetrazines by Thiol‐Containing Promotors. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wuyu Mao
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Wei Shi
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Jie Li
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Dunyan Su
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Xiaomeng Wang
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Lyuye Zhang
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| | - Lili Pan
- Department of Nuclear MedicineWest China HospitalSichuan University Chengdu 610041 China
| | - Xiaoai Wu
- Department of Nuclear MedicineWest China HospitalSichuan University Chengdu 610041 China
| | - Haoxing Wu
- Huaxi MR Research CenterDepartment of RadiologyWest China Hospital and West China School of MedicineSichuan University Chengdu 610041 China
| |
Collapse
|
16
|
Qu Y, Sauvage FX, Clavier G, Miomandre F, Audebert P. Metal-Free Synthetic Approach to 3-Monosubstituted Unsymmetrical 1,2,4,5-Tetrazines Useful for Bioorthogonal Reactions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yangyang Qu
- PPSM- CNRS- ENS Paris-Saclay; 61 Avenue Président Wilson 94235 Cachan France
| | | | - Gilles Clavier
- PPSM- CNRS- ENS Paris-Saclay; 61 Avenue Président Wilson 94235 Cachan France
| | - Fabien Miomandre
- PPSM- CNRS- ENS Paris-Saclay; 61 Avenue Président Wilson 94235 Cachan France
| | - Pierre Audebert
- PPSM- CNRS- ENS Paris-Saclay; 61 Avenue Président Wilson 94235 Cachan France
| |
Collapse
|
17
|
Qu Y, Sauvage FX, Clavier G, Miomandre F, Audebert P. Metal-Free Synthetic Approach to 3-Monosubstituted Unsymmetrical 1,2,4,5-Tetrazines Useful for Bioorthogonal Reactions. Angew Chem Int Ed Engl 2018; 57:12057-12061. [PMID: 30015385 DOI: 10.1002/anie.201804878] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/13/2018] [Indexed: 11/06/2022]
Abstract
A facile, efficient and metal-free synthetic approach to 3-monosubstituted unsymmetrical 1,2,4,5-tetrazines is presented. Dichloromethane (DCM) is for the first time recognized as a novel reagent in the synthetic chemistry of tetrazines. Using this novel approach 11 3-aryl/alkyl 1,2,4,5-tetrazines were prepared in excellent yields (up to 75 %). The mechanism of this new reaction, including the role of DCM in the tetrazine ring formation, has been investigated by 13 C labeling of DCM, and is also presented and discussed as well as the photophysical and electrochemical properties.
Collapse
Affiliation(s)
- Yangyang Qu
- PPSM- CNRS- ENS Paris-Saclay, 61 Avenue Président Wilson, 94235, Cachan, France
| | | | - Gilles Clavier
- PPSM- CNRS- ENS Paris-Saclay, 61 Avenue Président Wilson, 94235, Cachan, France
| | - Fabien Miomandre
- PPSM- CNRS- ENS Paris-Saclay, 61 Avenue Président Wilson, 94235, Cachan, France
| | - Pierre Audebert
- PPSM- CNRS- ENS Paris-Saclay, 61 Avenue Président Wilson, 94235, Cachan, France
| |
Collapse
|
18
|
Gao X, Sun JZ, Tang BZ. Reaction-based AIE-active Fluorescent Probes for Selective Detection and Imaging. Isr J Chem 2018. [DOI: 10.1002/ijch.201800035] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaoying Gao
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Department of Chemistry, Division of Biomedical Engineering, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, Institute of Molecular Functional Materials, Division of Life Science; Hong Kong University of Science and Technology; Clear Water Bay Kowloon, Hong Kong China
| |
Collapse
|
19
|
Stuhr‐Hansen N, Vagianou C, Blixt O. Synthesis of BODIPY‐Labeled Cholesterylated Glycopeptides by Tandem Click Chemistry for Glycocalyxification of Giant Unilamellar Vesicles (GUVs). Chemistry 2017; 23:9472-9476. [DOI: 10.1002/chem.201702104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Nicolai Stuhr‐Hansen
- Department of Chemistry, Chemical BiologyUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Charikleia‐Despoina Vagianou
- Department of Chemistry, Chemical BiologyUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Ola Blixt
- Department of Chemistry, Chemical BiologyUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
20
|
Kozma E, Demeter O, Kele P. Bio-orthogonal Fluorescent Labelling of Biopolymers through Inverse-Electron-Demand Diels-Alder Reactions. Chembiochem 2017; 18:486-501. [PMID: 28070925 PMCID: PMC5363342 DOI: 10.1002/cbic.201600607] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Bio-orthogonal labelling schemes based on inverse-electron-demand Diels-Alder (IEDDA) cycloaddition have attracted much attention in chemical biology recently. The appealing features of this reaction, such as the fast reaction kinetics, fully bio-orthogonal nature and high selectivity, have helped chemical biologists gain deeper understanding of biochemical processes at the molecular level. Listing the components and discussing the possibilities and limitations of these reagents, we provide a recent snapshot of the field of IEDDA-based biomolecular manipulation with special focus on fluorescent modulation approaches through the use of bio-orthogonalized building blocks. At the end, we discuss challenges that need to be addressed for further developments in order to overcome recent limitations and to enable researchers to answer biomolecular questions in more detail.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| | - Orsolya Demeter
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| | - Péter Kele
- Chemical Biology Research GroupInstitute of Organic ChemistryResearch Centre for Natural SciencesHungarian Academy of Sciences1117 Magyar tudósok krt. 2BudapestHungary
| |
Collapse
|
21
|
Xu AM, Wang DS, Shieh P, Cao Y, Melosh NA. Direct Intracellular Delivery of Cell-Impermeable Probes of Protein Glycosylation by Using Nanostraws. Chembiochem 2017; 18:623-628. [PMID: 28130882 DOI: 10.1002/cbic.201600689] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Bioorthogonal chemistry is an effective tool for elucidating metabolic pathways and measuring cellular activity, yet its use is currently limited by the difficulty of getting probes past the cell membrane and into the cytoplasm, especially if more complex probes are desired. Here we present a simple and minimally perturbative technique to deliver functional probes of glycosylation into cells by using a nanostructured "nanostraw" delivery system. Nanostraws provide direct intracellular access to cells through fluid conduits that remain small enough to minimize cell perturbation. First, we demonstrate that our platform can deliver an unmodified azidosugar, N-azidoacetylmannosamine, into cells with similar effectiveness to a chemical modification strategy (peracetylation). We then show that the nanostraw platform enables direct delivery of an azidosugar modified with a charged uridine diphosphate group (UDP) that prevents intracellular penetration, thereby bypassing multiple enzymatic processing steps. By effectively removing the requirement for cell permeability from the probe, the nanostraws expand the toolbox of bioorthogonal probes that can be used to study biological processes on a single, easy-to-use platform.
Collapse
Affiliation(s)
- Alexander M Xu
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA.,Present address: Chemistry and Chemical Engineering Division, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, 91106, USA
| | - Derek S Wang
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| | - Peyton Shieh
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
| | - Yuhong Cao
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| | - Nicholas A Melosh
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, Stanford, CA, 94305, USA
| |
Collapse
|
22
|
Clavadetscher J, Hoffmann S, Lilienkampf A, Mackay L, Yusop RM, Rider SA, Mullins JJ, Bradley M. Copper Catalysis in Living Systems and In Situ Drug Synthesis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201609837] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jessica Clavadetscher
- EaStCHEM School of Chemistry; University of Edinburgh; David Brewster Road EH9 3FJ Edinburgh UK
| | - Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science; Queen's Medical Research Institute; 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Annamaria Lilienkampf
- EaStCHEM School of Chemistry; University of Edinburgh; David Brewster Road EH9 3FJ Edinburgh UK
| | - Logan Mackay
- EaStCHEM School of Chemistry; University of Edinburgh; David Brewster Road EH9 3FJ Edinburgh UK
| | - Rahimi M. Yusop
- School of Chemical Sciences and Food Technology; Faculty of Science and Technology; Universiti Kebangsaan Malaysia; 43600 Bangi Selangor Malaysia
| | - Sebastien A. Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science; Queen's Medical Research Institute; 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - John J. Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science; Queen's Medical Research Institute; 47 Little France Crescent EH16 4TJ Edinburgh UK
| | - Mark Bradley
- EaStCHEM School of Chemistry; University of Edinburgh; David Brewster Road EH9 3FJ Edinburgh UK
| |
Collapse
|
23
|
Clavadetscher J, Hoffmann S, Lilienkampf A, Mackay L, Yusop RM, Rider SA, Mullins JJ, Bradley M. Copper Catalysis in Living Systems and In Situ Drug Synthesis. Angew Chem Int Ed Engl 2016; 55:15662-15666. [PMID: 27860120 DOI: 10.1002/anie.201609837] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/20/2016] [Indexed: 01/23/2023]
Abstract
The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has proven to be a pivotal advance in chemical ligation strategies with applications ranging from polymer fabrication to bioconjugation. However, application in vivo has been limited by the inherent toxicity of the copper catalyst. Herein, we report the application of heterogeneous copper catalysts in azide-alkyne cycloaddition processes in biological systems ranging from cells to zebrafish, with reactions spanning from fluorophore activation to the first reported in situ generation of a triazole-containing anticancer agent from two benign components, opening up many new avenues of exploration for CuAAC chemistry.
Collapse
Affiliation(s)
- Jessica Clavadetscher
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| | - Annamaria Lilienkampf
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Rahimi M Yusop
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Sebastien A Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| | - John J Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| |
Collapse
|
24
|
Shim MK, Yoon HY, Ryu JH, Koo H, Lee S, Park JH, Kim JH, Lee S, Pomper MG, Kwon IC, Kim K. Cathepsin B-Specific Metabolic Precursor for In Vivo Tumor-Specific Fluorescence Imaging. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Pharmacy, Graduate School; Kyung Hee University; 26, Kyungheedae-ro Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- School of Chemical Engineering; Sungkyunkwan University; 2066, Seobu-ro Jangan-gu Suwon 16419 Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Science, College of Medicine; The Catholic University of Korea; 222, Banpo-daero Seocho-gu Seoul 06591 Republic of Korea
| | - Sangmin Lee
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- The Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Jae Hyung Park
- School of Chemical Engineering; Sungkyunkwan University; 2066, Seobu-ro Jangan-gu Suwon 16419 Republic of Korea
| | - Jong-Ho Kim
- Department of Pharmacy, Graduate School; Kyung Hee University; 26, Kyungheedae-ro Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Seulki Lee
- The Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; 601 N. Caroline Street Baltimore MD 21287 USA
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
25
|
Shim MK, Yoon HY, Ryu JH, Koo H, Lee S, Park JH, Kim J, Lee S, Pomper MG, Kwon IC, Kim K. Cathepsin B‐Specific Metabolic Precursor for In Vivo Tumor‐Specific Fluorescence Imaging. Angew Chem Int Ed Engl 2016; 55:14698-14703. [DOI: 10.1002/anie.201608504] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- Department of Pharmacy, Graduate School Kyung Hee University 26, Kyungheedae-ro Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- School of Chemical Engineering Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon 16419 Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Science, College of Medicine The Catholic University of Korea 222, Banpo-daero Seocho-gu Seoul 06591 Republic of Korea
| | - Sangmin Lee
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine 601 N. Caroline Street Baltimore MD 21287 USA
| | - Jae Hyung Park
- School of Chemical Engineering Sungkyunkwan University 2066, Seobu-ro Jangan-gu Suwon 16419 Republic of Korea
| | - Jong‐Ho Kim
- Department of Pharmacy, Graduate School Kyung Hee University 26, Kyungheedae-ro Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Seulki Lee
- The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine 601 N. Caroline Street Baltimore MD 21287 USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine 601 N. Caroline Street Baltimore MD 21287 USA
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology Korea University 145 Anam-ro Seongbuk-gu Seoul 02841 Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute Korea Institute of Science and Technology 5, Hwarang-ro 14-gil Seongbuk-gu Seoul 02792 Republic of Korea
| |
Collapse
|
26
|
Yuan Y, Xu S, Cheng X, Cai X, Liu B. Bioorthogonal Turn-On Probe Based on Aggregation-Induced Emission Characteristics for Cancer Cell Imaging and Ablation. Angew Chem Int Ed Engl 2016; 55:6457-61. [DOI: 10.1002/anie.201601744] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Youyong Yuan
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xiamin Cheng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xiaolei Cai
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 3 Research Link Singapore 117602 Singapore
| |
Collapse
|
27
|
Yuan Y, Xu S, Cheng X, Cai X, Liu B. Bioorthogonal Turn-On Probe Based on Aggregation-Induced Emission Characteristics for Cancer Cell Imaging and Ablation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601744] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Youyong Yuan
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xiamin Cheng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Xiaolei Cai
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
- Institute of Materials Research and Engineering; Agency for Science, Technology and Research (A*STAR); 3 Research Link Singapore 117602 Singapore
| |
Collapse
|
28
|
Wang ZPA, Tian CL, Zheng JS. The recent developments and applications of the traceless-Staudinger reaction in chemical biology study. RSC Adv 2015. [DOI: 10.1039/c5ra21496c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioorthogonal reactions are one of the most important topics in chemical biology. Traceless-Staudinger reaction/ligation has been investigated and widely applied in life science. Herein, the current developments, mechanism studies, and biological applications are summarized.
Collapse
Affiliation(s)
- Zhi-Peng A. Wang
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
- Department of Chemistry
| | - Chang-Lin Tian
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Ji-Shen Zheng
- High Magnetic Field Laboratory
- Chinese Academy of Sciences
- Hefei 230031
- China
| |
Collapse
|