1
|
Wang B, Zhang X, Cao Y, Zou L, Qi X, Lu Q. Electrooxidative Activation of B-B Bond in B 2 cat 2 : Access to gem-Diborylalkanes via Paired Electrolysis. Angew Chem Int Ed Engl 2023; 62:e202218179. [PMID: 36722684 DOI: 10.1002/anie.202218179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
This report describes the unprecedented electrooxidation of a solvent (e.g., DMF)-ligated B2 cat2 complex, whereby a solvent-stabilized boryl radical is formed via quasi-homolytic cleavage of the B-B bond in a DMF-ligated B2 cat2 radical cation. Cyclic voltammetry and density functional theory provide evidence to support this novel B-B bond activation strategy. Furthermore, a strategy for the electrochemical gem-diborylation of gem-bromides via paired electrolysis is developed for the first time, affording a range of versatile gem-diborylalkanes, which are widely used in synthetic society. Notably, this reaction approach is scalable, transition-metal-free, and requires no external activator.
Collapse
Affiliation(s)
- Bingbing Wang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiangyu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yangmin Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Long Zou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
2
|
Enders P, Májek M, Lam CM, Little D, Francke R. How to Harness Electrochemical Mediators for Photocatalysis – A Systematic Approach Using the Phenanthro[9,10‐d]imidazole Framework as a Test Case. ChemCatChem 2022. [DOI: 10.1002/cctc.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Enders
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Electrochemistry & Catalysis GERMANY
| | - Michal Májek
- Comenius University in Bratislava: Univerzita Komenskeho v Bratislave Institute of Chemistry SLOVAKIA
| | - Chiu Marco Lam
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Daniel Little
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Robert Francke
- Rostock University Institute of Chemistry Albert-Einstein-Str. 3a 18059 Rostock GERMANY
| |
Collapse
|
3
|
Joshi DR, Kim I. Regioselective Synthesis of 1‐Cyano‐3‐arylindolizines: Construction of Pyrrole via DDQ‐Mediated Ring Closure of Cyclopropyl Pyridines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ikyon Kim
- Yonsei University KOREA (THE REPUBLIC OF)
| |
Collapse
|
4
|
Ravindar L, Hasbullah SA, Hassan NI, Qin HL. Cross‐Coupling of C‐H and N‐H Bonds: a Hydrogen Evolution Strategy for the Construction of C‐N Bonds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lekkala Ravindar
- Universiti Kebangsaan Malaysia Fakulti Teknologi dan Sains Maklumat Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Siti Aishah Hasbullah
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Nurul Izzaty Hassan
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Chemical Sciences Faculty of Science & Technology 43600 Bandar Baru Bangi MALAYSIA
| | - Hua-Li Qin
- Wuhan University of Technology School of Chemistry 430070 Hubei CHINA
| |
Collapse
|
5
|
Bhuyan S, Gogoi A, Basumatary J, Roy BG. Visible‐Light‐Promoted Metal‐Free Photocatalytic Direct Aromatic C‐H Oxygenation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | - Biswajit Gopal Roy
- Sikkim University Chemistry 6th Mile, TadongGangtokSikkim 737102 Gangtok INDIA
| |
Collapse
|
6
|
Salam A, Kumar D, Sahu TK, Khan R, Khan T. Total Synthesis of (−)‐Magnoshinin and (+)‐Merrilliaquinone: Application of a Late‐Stage Oxidative Functionalization Protocol. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abdus Salam
- Indian Institute of Technology Bhubaneswar School of Basic Sciences Argul, KhurdhaOdishaBhubaneswar 752050 Bhubaneswar INDIA
| | - Dileep Kumar
- Indian Institute of Technology Bhubaneswar School of Basic Sciences INDIA
| | - Tonish K. Sahu
- Indian Institute of Technology Bhubaneswar School of Basic Sciences INDIA
| | - Rahimuddin Khan
- Indian Institute of Technology Bhubaneswar School of Basic Sciences INDIA
| | - Tabrez Khan
- Indian Institute of Technology Bhubaneswar School of Basic Sciences Argul, Jatni 752050 Khurdha INDIA
| |
Collapse
|
7
|
Formen JSSK, Wolf C. Chiroptical Switching and Quantitative Chirality Sensing with (Pseudo)halogenated Quinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Christian Wolf
- Department of Chemistry Georgetown University Washington DC 20057 USA
| |
Collapse
|
8
|
Formen JSSK, Wolf C. Chiroptical Switching and Quantitative Chirality Sensing with (Pseudo)halogenated Quinones. Angew Chem Int Ed Engl 2021; 60:27031-27038. [PMID: 34679202 DOI: 10.1002/anie.202111542] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/11/2022]
Abstract
(Pseudo)halogenated quinones react smoothly with chiral amines, amino alcohols, and amino acids toward push-pull conjugates with optical sensing and switching applications. The chiroptically active conjugates serve as redox switches between two reversibly interconverting states with remarkably different UV and CD signatures. Addition of sodium borohydride generates a hydroquinone derivative that is quantitatively re-oxidized to the original quinone upon exposure to air. This chiroptical quinone/hydroquinone redox switch system combines several attractive features such as simple set-up, use of inexpensive chemicals, short response time, and thermal and photochemical stability. A conceptually new sensing approach that is based on integrated chiroptical amplification and redox switching enables on-the-fly deconvolution of otherwise overlapping CD spectra and is used for quantitative er analysis of challenging samples containing constitutional isomers in varying enantiomeric compositions.
Collapse
Affiliation(s)
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
9
|
Natarajan P, Chuskit D, Priya, Manjeet. 9,10‐Phenanthrenedione‐Catalyzed, Visible‐Light‐Promoted Radical Intramolecular Cyclization of N‐Biarylglycine Esters: One‐Pot synthesis of Phenanthridine‐6‐Carboxylates. ChemistrySelect 2021. [DOI: 10.1002/slct.202103001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Palani Natarajan
- Department of Chemistry & Centre for Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Deachen Chuskit
- Department of Chemistry & Centre for Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Priya
- Department of Chemistry & Centre for Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Manjeet
- Department of Chemistry Guru Jambheshwar University of Science and Technology Hisar Haryana India
| |
Collapse
|
10
|
Si T, Kim HY, Oh K. One-Pot Direct Oxidation of Primary Amines to Carboxylic Acids through Tandem ortho-Naphthoquinone-Catalyzed and TBHP-Promoted Oxidation Sequence. Chemistry 2021; 27:18150-18155. [PMID: 34755925 DOI: 10.1002/chem.202103450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 12/11/2022]
Abstract
Biomimetic oxidation of primary amines to carboxylic acids has been developed where the copper-containing amine oxidase (CuAO)-like o-NQ-catalyzed aerobic oxidation was combined with the aldehyde dehydrogenase (ALDH)-like TBHP-mediated imine oxidation protocol. Notably, the current tandem oxidation strategy provides a new mechanistic insight into the imine intermediate and the seemingly simple TBHP-mediated oxidation pathways of imines. The developed metal-free amine oxidation protocol allows the use of molecular oxygen and TBHP, safe forms of oxidant that may appeal to the industrial application.
Collapse
Affiliation(s)
- Tengda Si
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul, 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul, 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul, 06974, Republic of Korea
| |
Collapse
|
11
|
Cheng S, Jing Y, Cao L, Li W, Zhang X. Tandem Reaction of Phenyl
α
‐Cyano‐
α
‐arylacetates with Quinone Monoimines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shao‐Bing Cheng
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yi Jing
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lian‐Yi Cao
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wen‐Zhe Li
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Mei Zhang
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 China
| |
Collapse
|
12
|
Niu X, Yang L. Manganese(III) Acetate Catalyzed Aerobic Dehydrogenation of Tertiary Indolines, Tetrahydroquinolines and an
N
‐Unsubstituted Indoline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
| | - Lei Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou People's Republic of China
| |
Collapse
|
13
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University 410082 Changsha China
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University Holmgatan 10 SE-85170 Sundsvall Sweden
| |
Collapse
|
14
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021; 60:15686-15704. [PMID: 33368909 PMCID: PMC9545650 DOI: 10.1002/anie.202012707] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/17/2022]
Abstract
This Minireview presents recent important homogenous aerobic oxidative reactions which are assisted by electron transfer mediators (ETMs). Compared with direct oxidation by molecular oxygen (O2 ), the use of a coupled catalyst system with ETMs leads to a lower overall energy barrier via stepwise electron transfer. This cooperative catalytic process significantly facilitates the transport of electrons from the reduced form of the substrate-selective redox catalyst (SSRCred ) to O2 , thereby increasing the efficiency of the aerobic oxidation. In this Minireview, we have summarized the advances accomplished in recent years in transition-metal-catalyzed as well as metal-free aerobic oxidations of organic molecules in the presence of ETMs. In addition, the recent progress of photochemical and electrochemical oxidative functionalization using ETMs and O2 as the terminal oxidant is also highlighted. Furthermore, the mechanisms of these transformations are showcased.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University410082ChangshaChina
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10SE-85170SundsvallSweden
| |
Collapse
|
15
|
Liu S, Tian M, Bu X, Tian H, Yang X. Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry 2021; 27:7738-7744. [PMID: 33788327 DOI: 10.1002/chem.202100398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.
Collapse
Affiliation(s)
- Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Miao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
16
|
Carlet F, Bertarini G, Broggini G, Pradal A, Poli G. Oxoammonium‐Mediated Allylsilane–Ether Coupling Reaction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Federica Carlet
- Faculté des Sciences et Ingénierie CNRS Institut Parisien de Chimie Moléculaire IPCM Sorbonne Université 4 place Jussieu 75005 Paris France
- Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Greta Bertarini
- Faculté des Sciences et Ingénierie CNRS Institut Parisien de Chimie Moléculaire IPCM Sorbonne Université 4 place Jussieu 75005 Paris France
- Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Gianluigi Broggini
- Dipartimento di Scienza e Alta Tecnologia Università dell'Insubria Via Valleggio 11 22100 Como Italy
| | - Alexandre Pradal
- Faculté des Sciences et Ingénierie CNRS Institut Parisien de Chimie Moléculaire IPCM Sorbonne Université 4 place Jussieu 75005 Paris France
| | - Giovanni Poli
- Faculté des Sciences et Ingénierie CNRS Institut Parisien de Chimie Moléculaire IPCM Sorbonne Université 4 place Jussieu 75005 Paris France
| |
Collapse
|
17
|
Cheng S, Liu H, Jing Y, Cao L, Zhang X. Tandem Conjugate Addition/Aromatization/Acyl Transfer Reaction between 3‐Aryl‐2‐nitropropanoates and Quinone Monoimines. ChemistrySelect 2021. [DOI: 10.1002/slct.202100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shao‐Bing Cheng
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Liu
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yi Jing
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lian‐Yi Cao
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Mei Zhang
- Key Laboratory of Asymmetric Synthesis and Chiraltechnology of Sichuan Province Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
| |
Collapse
|
18
|
Natarajan P, König B. Excited‐State 2,3‐Dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ*) Initiated Organic Synthetic Transformations under Visible‐Light Irradiation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palani Natarajan
- Department of Chemistry and Centre for Advanced Studies Panjab University Chandigarh 160014, U.T. India
| | - Burkhard König
- Faculty for Chemistry and Pharmacy University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
19
|
Margalef J, Samec JSM. Assessing Methodologies to Synthesize α-Sulfenylated Carbonyl Compounds by Green Chemistry Metrics. CHEMSUSCHEM 2021; 14:808-823. [PMID: 33180999 PMCID: PMC7894555 DOI: 10.1002/cssc.202002409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/08/2020] [Indexed: 06/11/2023]
Abstract
α-Sulfenylated carbonyl compounds are important both as active pharmaceutical ingredients and as intermediates in organic synthesis. Owing to their relevance in synthetic organic chemistry, this Minireview focuses on assessing the most relevant synthetic procedures based on green chemistry metrics. The Minireview starts with the traditional routes and then focuses on more recently developed methodologies. These routes include sulfenylating reagents using organocatalysis, cross-dehydrogenative couplings using in situ halogenations to prevent reactive intermediates in high concentrations, oxidative couplings using terminal oxidants such as DDQ or TEMPO, and redox-neutral couplings using transition metal catalysis. These methodologies have been evaluated on the basis of atom economy, E factor, and the safety and toxicity of the transformations and the solvents used. Besides using green metrics to evaluate these novel methodologies, the synthetic utility is also assessed with regard to the availability of starting materials and the generality of the reactions. This Minireview aims to inspire researchers to apply green assessments to other methodologies and also for them to take measures to increase the greenness of their developed transformations.
Collapse
Affiliation(s)
- Jèssica Margalef
- Departament de Química Física i InorgànicaUniversitat Rovira i VirgiliC/ Marcel lí Domingo, 143007TarragonaSpain
| | - Joseph S. M. Samec
- Department of Organic ChemistryStockholm UniversitySvante Arrhenius väg 16 C106 91StockholmSweden
| |
Collapse
|
20
|
K Bains A, Ankit Y, Adhikari D. Bioinspired Radical-Mediated Transition-Metal-Free Synthesis of N-Heterocycles under Visible Light. CHEMSUSCHEM 2021; 14:324-329. [PMID: 33210460 DOI: 10.1002/cssc.202002161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/16/2020] [Indexed: 06/11/2023]
Abstract
A redox-active iminoquinone motif connected with π-delocalized pyrene core has been reported that can perform efficient two-electron oxidation of a class of substrates. The design of the molecule was inspired by the organic redox cofactor topaquinone (TPQ), which executes amine oxidation in the enzyme, copper amine oxidase. Easy oxidation of both primary and secondary alcohols happened in the presence of catalytic KOtBu, which could reduce the ligand backbone to its iminosemiquinonate form under photoinduced conditions. Moreover, this easy oxidation of alcohols under aerobic condition could be elegantly extended to multi-component, one-pot coupling for the synthesis of quinoline and pyrimidine. This organocatalytic approach is very mild (70 °C, 8 h) compared to a multitude of transition-metal catalysts that have been used to prepare these heterocycles. A detailed mechanistic study proves the intermediacy of the iminosemiquinonate-type radical and a critical hydrogen atom transfer step to be involved in the dehydrogenation reaction.
Collapse
Affiliation(s)
- Amreen K Bains
- Department of Chemical Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| | - Yadav Ankit
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and research (IISER)-Mohali, SAS Nagar, Punjab, 140306, India
| |
Collapse
|
21
|
Volpe C, Meninno S, Roselli A, Mancinelli M, Mazzanti A, Lattanzi A. Nitrone/Imine Selectivity Switch in Base‐Catalysed Reaction of Aryl Acetic Acid Esters with Nitrosoarenes: Joint Experimental and Computational Study. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chiara Volpe
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II, 132 84084 Fisciano Italy
| | - Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II, 132 84084 Fisciano Italy
| | - Angelo Roselli
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II, 132 84084 Fisciano Italy
| | - Michele Mancinelli
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II, 132 84084 Fisciano Italy
| |
Collapse
|
22
|
Mo Y, Rughoobur G, Nambiar AMK, Zhang K, Jensen KF. A Multifunctional Microfluidic Platform for High‐Throughput Experimentation of Electroorganic Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yiming Mo
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Girish Rughoobur
- Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anirudh M. K. Nambiar
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Kara Zhang
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
23
|
Mo Y, Rughoobur G, Nambiar AMK, Zhang K, Jensen KF. A Multifunctional Microfluidic Platform for High‐Throughput Experimentation of Electroorganic Chemistry. Angew Chem Int Ed Engl 2020; 59:20890-20894. [DOI: 10.1002/anie.202009819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Yiming Mo
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Girish Rughoobur
- Electrical Engineering and Computer Science Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Anirudh M. K. Nambiar
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Kara Zhang
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Klavs F. Jensen
- Department of Chemical Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
24
|
Kuang S, Sun L, Zhang X, Liao X, Rees TW, Zeng L, Chen Y, Zhang X, Ji L, Chao H. A Mitochondrion‐Localized Two‐Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Lingli Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xianrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiting Zhang
- Department of Chemistry University of Hong Kong Pokfulam Road Hong Kong S.A.R. P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
25
|
Kuang S, Sun L, Zhang X, Liao X, Rees TW, Zeng L, Chen Y, Zhang X, Ji L, Chao H. A Mitochondrion-Localized Two-Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors. Angew Chem Int Ed Engl 2020; 59:20697-20703. [PMID: 32735748 DOI: 10.1002/anie.202009888] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 12/18/2022]
Abstract
The efficacy of photodynamic therapy is typically reliant on the local concentration and diffusion of oxygen. Due to the hypoxic microenvironment found in solid tumors, oxygen-independent photosensitizers are in great demand for cancer therapy. We herein report an iridium(III) anthraquinone complex as a mitochondrion-localized carbon-radical initiator. Its emission is turned on under hypoxic conditions after reduction by reductase. Furthermore, its two-photon excitation properties (λex =730 nm) are highly desirable for imaging. Upon irradiation, the reduced form of the complex generates carbon radicals, leading to a loss of mitochondrial membrane potential and cell death (IC50 light =2.1 μm, IC50 dark =58.2 μm, PI=27.7). The efficacy of the complex as a PDT agent was also demonstrated under hypoxic conditions in vivo. To the best of our knowledge, it is the first metal-complex-based theranostic agent which can generate carbon radicals for oxygen-independent two-photon photodynamic therapy.
Collapse
Affiliation(s)
- Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Lingli Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xianrui Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiting Zhang
- Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
26
|
Batra A, Singh KN. Recent Developments in Transition Metal‐Free Cross‐Dehydrogenative Coupling Reactions for C–C Bond Formation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000785] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Aanchal Batra
- PG Department of Chemistry Mehr Chand Mahajan DAV College for Women Sec 36/A 160036 Chandigarh India
| | - Kamal Nain Singh
- Department of Chemistry and Centre of Advanced studies in Chemistry Panjab University 160014 Chandigarh India
| |
Collapse
|
27
|
Tobiesen HN, Leth LA, Iversen MV, Næsborg L, Bertelsen S, Jørgensen KA. Stereoselective Oxidative Bioconjugation of Amino Acids and Oligopeptides to Aldehydes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Henriette N. Tobiesen
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
- Research Chemistry, Global Research Technologies Novo Nordisk A/S 2760 Maaloev Denmark
| | - Lars A. Leth
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | - Marc V. Iversen
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | - Line Næsborg
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | - Søren Bertelsen
- Research Chemistry, Global Research Technologies Novo Nordisk A/S 2760 Maaloev Denmark
| | | |
Collapse
|
28
|
Tobiesen HN, Leth LA, Iversen MV, Næsborg L, Bertelsen S, Jørgensen KA. Stereoselective Oxidative Bioconjugation of Amino Acids and Oligopeptides to Aldehydes. Angew Chem Int Ed Engl 2020; 59:18490-18494. [DOI: 10.1002/anie.202008513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Henriette N. Tobiesen
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
- Research Chemistry, Global Research Technologies Novo Nordisk A/S 2760 Maaloev Denmark
| | - Lars A. Leth
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | - Marc V. Iversen
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | - Line Næsborg
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | - Søren Bertelsen
- Research Chemistry, Global Research Technologies Novo Nordisk A/S 2760 Maaloev Denmark
| | | |
Collapse
|
29
|
Kim J, Oh K. Copper‐Catalyzed Aerobic Oxidation of Amines to Benzothiazoles via Cross Coupling of Amines and Arene Thiolation Sequence. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jihyeon Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical SciencesChung-Ang University, 84 Heukseok-ro, Dongjak Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical SciencesChung-Ang University, 84 Heukseok-ro, Dongjak Seoul 06974, Republic of Korea
| |
Collapse
|
30
|
Wagner C, Kreis F, Popp D, Hübner O, Kaifer E, Himmel H. 1,2,4,5-Tetrakis(tetramethylguanidino)-3,6-diethynyl-benzenes: Fluorescent Probes, Redox-Active Ligands and Strong Organic Electron Donors. Chemistry 2020; 26:10336-10347. [PMID: 32368816 PMCID: PMC7497081 DOI: 10.1002/chem.202001557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Indexed: 11/25/2022]
Abstract
In this work, the change of reactivity induced by the introduction of two para-ethynyl substituents (CCSi(iPr)3 or CCH) to the organic electron-donor 1,2,4,5-tetrakis(tetramethylguanidino)-benzene is evaluated. The redox-properties and redox-state dependent fluorescence are evaluated, and dinuclear CuI and CuII complexes synthesized. The Lewis-acidic B(C6 F5 )3 substitutes the proton of the ethynyl -CCH groups to give new anionic -CCB(C6 F5 )3 - substituents, leading eventually to a novel dianionic strong electron donor in its diprotonated form. Its two-electron oxidation with dioxygen in the presence of a copper catalyst yields the first redox-active guanidine that is neutral (instead of cationic) in its oxidized form.
Collapse
Affiliation(s)
- Conrad Wagner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Franka Kreis
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Dennis Popp
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
31
|
Varlet T, Gelis C, Retailleau P, Bernadat G, Neuville L, Masson G. Enantioselective Redox‐Divergent Chiral Phosphoric Acid Catalyzed Quinone Diels–Alder Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Thomas Varlet
- Institut de Chimie des Substances Naturelles CNRS Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Coralie Gelis
- Institut de Chimie des Substances Naturelles CNRS Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Guillaume Bernadat
- Laboratoire Chimie Thérapeutique Faculté de Pharmacie—Biocis 8076 LabEx LERMIT 5, rue J.B Clément 92296 Châtenay Malabry France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS Univ. Paris-Saclay 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| |
Collapse
|
32
|
Chen YH, Li HH, Zhang X, Xiang SH, Li S, Tan B. Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl-p-Quinones: Platform Molecules for Diversity-Oriented Synthesis of Biaryldiols. Angew Chem Int Ed Engl 2020; 59:11374-11378. [PMID: 32277551 DOI: 10.1002/anie.202004671] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Indexed: 01/30/2023]
Abstract
Presented here is a class of novel axially chiral aryl-p-quinones as platform molecules for the preparation of non-C2 symmetric biaryldiols. Two sets of aryl-p-quinone frameworks were synthesized with remarkable enantiocontrol by means of chiral phosphoric acid catalyzed enantioselective arylation of p-quinones by central-to-axial chirality conversion. These aryl-p-quinones were then used to access a wide spectrum of highly functionalized non-C2 symmetric biaryldiols with excellent retention of the enantiopurity.
Collapse
Affiliation(s)
- Ye-Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Heng-Hui Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shaoyu Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
33
|
Chen Y, Li H, Zhang X, Xiang S, Li S, Tan B. Organocatalytic Enantioselective Synthesis of Atropisomeric Aryl‐
p
‐Quinones: Platform Molecules for Diversity‐Oriented Synthesis of Biaryldiols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye‐Hui Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Heng‐Hui Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Xiao Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Shao‐Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Shaoyu Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518055 China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
34
|
Sheridan T, Yayla HG, Lian Y, Genovino J, Monck N, Burton JW. Organophotochemical S N
Ar Reactions of Mildly Electron-Poor Fluoroarenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Sheridan
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road OX1 3TA Oxford U.K
| | - Hatice G. Yayla
- Chemistry Research Laboratory; Pfizer Worldwide Research and Development; 445 Eastern Point Road 06340 Groton Connecticut United States
| | - Yajing Lian
- Chemistry Research Laboratory; Pfizer Worldwide Research and Development; 445 Eastern Point Road 06340 Groton Connecticut United States
| | - Julien Genovino
- Chemistry Research Laboratory; Pfizer Worldwide Research and Development; 445 Eastern Point Road 06340 Groton Connecticut United States
| | - Nat Monck
- Chemistry Research Laboratory; Evotec (UK) Ltd.; 114 Innovation Drive, Milton Park OX14 4RZ Milton Abingdon U.K
| | - Jonathan W. Burton
- Department of Chemistry; University of Oxford; Chemistry Research Laboratory; University of Oxford; 12 Mansfield Road OX1 3TA Oxford U.K
| |
Collapse
|
35
|
Varlet T, Gelis C, Retailleau P, Bernadat G, Neuville L, Masson G. Enantioselective Redox-Divergent Chiral Phosphoric Acid Catalyzed Quinone Diels-Alder Reactions. Angew Chem Int Ed Engl 2020; 59:8491-8496. [PMID: 32112662 DOI: 10.1002/anie.202000838] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 01/06/2023]
Abstract
An efficient enantioselective construction of tetrahydronaphthalene-1,4-diones as well as dihydronaphthalene-1,4-diols by a chiral phosphoric acid catalyzed quinone Diels-Alder reaction with dienecarbamates is reported. The nature of the protecting group on the diene is key to the success of achieving high enantioselectivity. The divergent "redox" selectivity is controlled by using an adequate amount of quinones. Reversible redox switching without erosion of enantioselectivity was possible from individual redox isomers.
Collapse
Affiliation(s)
- Thomas Varlet
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Coralie Gelis
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Guillaume Bernadat
- Laboratoire Chimie Thérapeutique, Faculté de Pharmacie-Biocis 8076, LabEx LERMIT, 5, rue J.B Clément, 92296, Châtenay Malabry, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
36
|
Temperini A, Lanari D, Colognese F, Piazzolla F. Scalable Multicomponent Synthesis of (Hetero)aryl-Substituted Phenyls: Focus on Metal-Free Halogenated Biaryls, 3-Arylindoles, and Isourolithine A Synthesis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrea Temperini
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Daniela Lanari
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Francesco Colognese
- Dipartimento di Scienze Farmaceutiche; Università di Perugia; Via del Liceo 1 06123 Perugia Italy
| | - Francesca Piazzolla
- School of Chemistry and Biochemistry; University of Geneva; 1211 Geneva Switzerland
| |
Collapse
|
37
|
Wild U, Hübner O, Himmel H. Redox-Active Guanidines in Proton-Coupled Electron-Transfer Reactions: Real Alternatives to Benzoquinones? Chemistry 2019; 25:15988-15992. [PMID: 31535741 PMCID: PMC7065378 DOI: 10.1002/chem.201903438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Guanidino-functionalized aromatics (GFAs) are readily available, stable organic redox-active compounds. In this work we apply one particular GFA compound, 1,2,4,5-tetrakis(tetramethylguanidino)benzene, in its oxidized form in a variety of oxidation/oxidative coupling reactions to demonstrate the scope of its proton-coupled electron transfer (PCET) reactivity. Addition of an excess of acid boosts its oxidation power, enabling the oxidative coupling of substrates with redox potentials of at least +0.77 V vs. Fc+ /Fc. The green recyclability by catalytic re-oxidation with dioxygen is also shown. Finally, a direct comparison indicates that GFAs are real alternatives to toxic halo- or cyano-substituted benzoquinones.
Collapse
Affiliation(s)
- Ute Wild
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Olaf Hübner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Hans‐Jörg Himmel
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
38
|
Bisag GD, Pecorari D, Mazzanti A, Bernardi L, Fochi M, Bencivenni G, Bertuzzi G, Corti V. Central‐to‐Axial Chirality Conversion Approach Designed on Organocatalytic Enantioselective Povarov Cycloadditions: First Access to Configurationally Stable Indole–Quinoline Atropisomers. Chemistry 2019; 25:15694-15701. [DOI: 10.1002/chem.201904213] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Giorgiana Denisa Bisag
- Department of Industrial Chemistry “Toso Montanari”Alma Mater Studiorum–University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Daniel Pecorari
- Department of Industrial Chemistry “Toso Montanari”Alma Mater Studiorum–University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari”Alma Mater Studiorum–University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Luca Bernardi
- Department of Industrial Chemistry “Toso Montanari”Alma Mater Studiorum–University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry “Toso Montanari”Alma Mater Studiorum–University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry “Toso Montanari”Alma Mater Studiorum–University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giulio Bertuzzi
- Department of Industrial Chemistry “Toso Montanari”Alma Mater Studiorum–University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Vasco Corti
- Department of Industrial Chemistry “Toso Montanari”Alma Mater Studiorum–University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
39
|
Blom J, Reyes‐Rodríguez GJ, Tobiesen HN, Lamhauge JN, Iversen MV, Barløse CL, Hammer N, Rusbjerg M, Jørgensen KA. Umpolung Strategy for α‐Functionalization of Aldehydes for the Addition of Thiols and other Nucleophiles. Angew Chem Int Ed Engl 2019; 58:17856-17862. [DOI: 10.1002/anie.201911793] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/02/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jakob Blom
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | | | - Henriette N. Tobiesen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
- Research ChemistryGlobal Research TechnologiesNovo Nordisk A/S Novo Nordisk Park 2760 Maaloev Denmark
| | - Johannes N. Lamhauge
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Marc V. Iversen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Casper L. Barløse
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Niels Hammer
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Matilde Rusbjerg
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Karl Anker Jørgensen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
40
|
Huang H, Lambert TH. Electrophotocatalytic S N Ar Reactions of Unactivated Aryl Fluorides at Ambient Temperature and Without Base. Angew Chem Int Ed Engl 2019; 59:658-662. [PMID: 31583795 DOI: 10.1002/anie.201909983] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 12/21/2022]
Abstract
The electrophotocatalytic SN Ar reaction of unactivated aryl fluorides at ambient temperature without strong base is demonstrated.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Huang H, Lambert TH. Electrophotocatalytic S
N
Ar Reactions of Unactivated Aryl Fluorides at Ambient Temperature and Without Base. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909983] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical BiologyCornell University Ithaca NY 14853 USA
| | - Tristan H. Lambert
- Department of Chemistry and Chemical BiologyCornell University Ithaca NY 14853 USA
| |
Collapse
|
42
|
West MJ, Thomson B, Vantourout JC, Watson AJB. Discovery, Scope, and Limitations of an
N
‐Dealkylation/
N
‐Arylation of Secondary Sulfonamides under Chan−Lam Conditions. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew J. West
- EaStCHEM, School of ChemistryUniversity of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Brodie Thomson
- EaStCHEM, School of ChemistryUniversity of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| | - Julien C. Vantourout
- Department of ChemistryThe Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Allan J. B. Watson
- EaStCHEM, School of ChemistryUniversity of St Andrews North Haugh, St Andrews Fife KY16 9ST UK
| |
Collapse
|
43
|
Xiao X, Greenwood NS, Wengryniuk SE. Dearomatization of Electron-Deficient Phenols to ortho-Quinones: Bidentate Nitrogen-Ligated Iodine(V) Reagents. Angew Chem Int Ed Engl 2019; 58:16181-16187. [PMID: 31430009 PMCID: PMC6814494 DOI: 10.1002/anie.201909868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Indexed: 01/13/2023]
Abstract
Despite their broad utility, the synthesis of ortho-quinones remains a significant challenge, in particular, access to electron-deficient derivatives remains an unsolved problem. Reported here is the first general method for the synthesis of electron-deficient ortho-quinones by direct oxidation of phenols. The reaction is enabled by a novel bidentate nitrogen-ligated iodine(V) reagent, a previously unexplored class of compounds which we have termed Bi(N)-HVIs. The reaction is extremely general and proceeds with excellent regioselectivity for the ortho over para isomer. Functionalization of the ortho-quinone products was examined, resulting in a facile one-pot synthesis of catechols, as well as the incorporation of a variety of heteroatom nucleophiles. This method represents the first synthetic application of Bi(N)-HVIs and demonstrates their potential as a platform for the further development of highly reactive, but also highly tunable, I(V) reagents.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| | - Nathaniel S Greenwood
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
- Present address: Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT, 06520, USA
| | - Sarah E Wengryniuk
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA, 19122, USA
| |
Collapse
|
44
|
Ortiz‐Rojano L, Rojas‐Martín J, Rodríguez‐Diaz C, Carreño MC, Ribagorda M. Light‐Induced Tetrazole‐Quinone 1,3‐Dipolar Cycloadditions. Chemistry 2019; 25:15050-15054. [DOI: 10.1002/chem.201904138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Laura Ortiz‐Rojano
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
| | - Jaime Rojas‐Martín
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
| | - Ciro Rodríguez‐Diaz
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
| | - M. Carmen Carreño
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Maria Ribagorda
- Departamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid C/Francisco TomásyValiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
45
|
Blom J, Reyes‐Rodríguez GJ, Tobiesen HN, Lamhauge JN, Iversen MV, Barløse CL, Hammer N, Rusbjerg M, Jørgensen KA. Umpolung Strategy for α‐Functionalization of Aldehydes for the Addition of Thiols and other Nucleophiles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jakob Blom
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | | | - Henriette N. Tobiesen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
- Research ChemistryGlobal Research TechnologiesNovo Nordisk A/S Novo Nordisk Park 2760 Maaloev Denmark
| | - Johannes N. Lamhauge
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Marc V. Iversen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Casper L. Barløse
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Niels Hammer
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Matilde Rusbjerg
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Karl Anker Jørgensen
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
46
|
Xiao X, Greenwood NS, Wengryniuk SE. Dearomatization of Electron‐Deficient Phenols to
ortho
‐Quinones: Bidentate Nitrogen‐Ligated Iodine(V) Reagents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Xiao
- Department of ChemistryTemple University 1901 N. 13th St. Philadelphia PA 19122 USA
| | - Nathaniel S. Greenwood
- Department of ChemistryTemple University 1901 N. 13th St. Philadelphia PA 19122 USA
- Present address: Department of ChemistryYale University 225 Prospect St. New Haven CT 06520 USA
| | - Sarah E. Wengryniuk
- Department of ChemistryTemple University 1901 N. 13th St. Philadelphia PA 19122 USA
| |
Collapse
|
47
|
Fukuzumi S, Lee YM, Nam W. Photocatalytic Oxygenation Reactions Using Water and Dioxygen. CHEMSUSCHEM 2019; 12:3931-3940. [PMID: 31250964 DOI: 10.1002/cssc.201901276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Water (H2 O) is the most environmentally benign reductant and is oxidized to evolve dioxygen (O2 )-the greenest oxidant-in photosystem II. This Minireview focuses on photocatalytic oxygenation of substrates with H2 O as an oxygen source and O2 as an oxidant. Metal complexes can be oxidized by two molecules of one-electron oxidants with H2 O to produce high-valent metal-oxo complexes, which act as active oxidants for oxygenating organic substrates. When an appropriate oxidant is employed for the substrate oxidation, the reduced oxidant can be oxidized by dioxygen to regenerate the oxidant when water and dioxygen are used as an oxygen source and an oxidant, respectively. Photoinduced electron transfer from a substrate (S) to the excited state of complex [(L)MIII ]+ produces a substrate radical cation (S.+ ), accompanied by the regeneration of [(L)MII ]. S.+ then reacts with H2 O to produce an OH adduct radical that is oxidized by [(L)MIII ]+ to yield an oxygenated product (SO), in which the oxygen atom originates from H2 O, accompanied by regeneration of [(L)MII ]. Photocatalytic oxidation of H2 O by O2 to produce H2 O2 is combined with the catalytic oxygenation of substrates with H2 O2 to produce the oxygenated products, in which the oxygen atom originates from O2 at the beginning but later from water. This Minireview provides a promising strategy for oxygenation of substrates by using H2 O as an oxygen source and O2 as the greenest oxidant.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
48
|
Kim J, Golime G, Kim HY, Oh K. Copper(II)‐Catalyzed Aerobic Oxidation of Amines: Divergent Reaction Pathways by Solvent Control to Imines and Nitriles. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jihyeon Kim
- Center for Metareceptome Research, College of PharmacyChung-Ang University 84 Heukseok-ro, Dongjak Seoul 06974 Republic of Korea
| | - Gangadhararao Golime
- Center for Metareceptome Research, College of PharmacyChung-Ang University 84 Heukseok-ro, Dongjak Seoul 06974 Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research, College of PharmacyChung-Ang University 84 Heukseok-ro, Dongjak Seoul 06974 Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, College of PharmacyChung-Ang University 84 Heukseok-ro, Dongjak Seoul 06974 Republic of Korea
| |
Collapse
|
49
|
Zhang Y, Schilling W, Das S. Metal-Free Photocatalysts for C-H Bond Oxygenation Reactions with Oxygen as the Oxidant. CHEMSUSCHEM 2019; 12:2898-2910. [PMID: 30934144 DOI: 10.1002/cssc.201900414] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Direct and selective oxygenation of C-H bonds to C-O bonds is regarded as an effective tool to generate high-value products. However, these reactions are still subject to challenges such as harsh reaction conditions, use of expensive transition metal catalysts, and involvement of stoichiometric oxidants. To avoid these, molecular oxygen would be ideal as oxidant, as the byproduct is water or hydrogen peroxide. Additionally, achieving these reactions by using metal-free catalysts would contribute to green and sustainable chemical synthesis. This Minireview summarizes recent reports on C-H oxygenation reactions with metal-free catalysts and molecular oxygen under visible-light conditions.
Collapse
Affiliation(s)
- Yu Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
50
|
Wagner C, Hübner O, Kaifer E, Himmel HJ. Probing the Proton-Coupled Electron-Transfer (PCET) Reactivity of a Cross-Conjugated Cruciform Chromophore by Redox-State-Dependent Fluorescence. Chemistry 2019; 25:3781-3785. [PMID: 30688382 DOI: 10.1002/chem.201900268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 11/07/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions are of great importance in synthetic chemistry and in biology, but the acquisition of kinetic information for these reactions is often difficult. Herein, we report the synthesis of a new PCET reagent, showing redox-state dependent fluorescence, by merging the concept of cross-conjugated cruciform chromophores with the strategy of imposing redox activity and Brønsted basicity to aromatic compounds by substitution with guanidino groups. The compound is isolated and characterized in all stable states-reduced, twofold and fourfold protonated and twofold oxidized-and then applied in PCET reactions by using its redox-state dependent fluorescence signal for kinetic measurements.
Collapse
Affiliation(s)
- Conrad Wagner
- Anorganisch-Chemisches Institut, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Olaf Hübner
- Anorganisch-Chemisches Institut, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Anorganisch-Chemisches Institut, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Anorganisch-Chemisches Institut, Ruprecht-Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|