1
|
Thuan NH, Huong QTT, Lam BD, Tam HT, Thu PT, Canh NX, Tatipamula VB. Advances in glycosyltransferase-mediated glycodiversification of small molecules. 3 Biotech 2024; 14:209. [PMID: 39184913 PMCID: PMC11343957 DOI: 10.1007/s13205-024-04044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Currently, numerous glycosides have been synthesized and used in clinical applications, neutraceuticals, cosmetics, and food processing. Structurally, a glycoside is composed of aglycone attaching to one or several sugar moieties so-called glycone. It is found that biochemical or biopharmaceutical properties of glycoside are mainly determined by its sugar part and thereby alternation of this glycone resulting in novel structure and characteristics as well. The use of traditional production methods of glycosides such as direct extraction and purification from plants, animals, or microorganisms is very challenging (laborious, time-consuming, technique, high price, low yield, etc.). Alternatively, the use of enzymatic methods for the biosynthesis of glycosides has become a highly promising tool. Particularly, the diverse structure of glycosides can be obtained using the promiscuous catalytic activity of glycosyltransferases (GT) mined from bioresources (plants, fungi, microorganisms, etc.). In addition, the exploration of GT catalytic promiscuity toward diverse aglycones, and glycones has indeed been interesting and played a key role in the production of novel glycosides. This review described the recent advances in glycosyltransferase-mediated glycodiversification of small molecules (flavonoids, steroids, terpenoids, etc.). Mostly, references were collected from 2014 to 2023.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Pharmaceutical Biotechnology, Duy Tan University, Da Nang, 550000 Vietnam
| | | | - Bui Dinh Lam
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, 112304 Taiwan
- Faculty of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen, 250000 Vietnam
| | - Ho Thanh Tam
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
- Biotechnology Department, College of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Pham The Thu
- Institute of Marine Environment and Resources (IMER), Vietnam Academy of Science and Technology (VAST), Ho Chi Minh, Vietnam
| | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | | |
Collapse
|
2
|
Putkaradze N, Dato L, Kırtel O, Hansen J, Welner DH. Enzymatic glycosylation of aloesone performed by plant UDP-dependent glycosyltransferases. Glycobiology 2024; 34:cwae050. [PMID: 38995933 PMCID: PMC11273223 DOI: 10.1093/glycob/cwae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/14/2024] Open
Abstract
Aloesone is a bioactive natural product and biosynthetic precursor of rare glucosides found in rhubarb and some aloe plants including Aloe vera. This study aimed to investigate biocatalytic aloesone glycosylation and more than 400 uridine diphosphate-dependent glycosyltransferase (UGT) candidates, including multifunctional and promiscuous enzymes from a variety of plant species were assayed. As a result, 137 selective aloesone UGTs were discovered, including four from the natural producer rhubarb. Rhubarb UGT72B49 was further studied and its catalytic constants (kcat = 0.00092 ± 0.00003 s-1, KM = 30 ± 2.5 μM) as well as temperature and pH optima (50 °C and pH 7, respectively) were determined. We further aimed to find an efficient aloesone glycosylating enzyme with potential application for biocatalytic production of the glucoside. We discovered UGT71C1 from Arabidopsis thaliana as an efficient aloesone UGT showing a 167-fold higher catalytic efficiency compared to that of UGT72B49. Interestingly, sequence analysis of all the 137 newly identified aloesone UGTs showed that they belong to different phylogenetic groups, with the highest representation in groups B, D, E, F and L. Finally, our study indicates that aloesone C-glycosylation is highly specific and rare, since it was not possible to achieve in an efficient manner with any of the 422 UGTs assayed, including multifunctional GTs and 28 known C-UGTs.
Collapse
Affiliation(s)
- Natalia Putkaradze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| | - Laura Dato
- River Stone Biotech ISG, Fruebjergvej 3, Copenhagen DK-2100, Denmark
| | - Onur Kırtel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| | - Jørgen Hansen
- River Stone Biotech ISG, Fruebjergvej 3, Copenhagen DK-2100, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads 220, Lyngby DK-2800, Denmark
| |
Collapse
|
3
|
Yan R, Xie B, Xie K, Liu Q, Sui S, Wang S, Chen D, Liu J, Chen R, Dai J, Yang L. Unravelling and reconstructing the biosynthetic pathway of bergenin. Nat Commun 2024; 15:3539. [PMID: 38670975 PMCID: PMC11053098 DOI: 10.1038/s41467-024-47502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Bergenin, a rare C-glycoside of 4-O-methyl gallic acid with pharmacological properties of antitussive and expectorant, is widely used in clinics to treat chronic tracheitis in China. However, its low abundance in nature and structural specificity hampers the accessibility through traditional crop-based manufacturing or chemical synthesis. In the present work, we elucidate the biosynthetic pathway of bergenin in Ardisia japonica by identifying the highly regio- and/or stereoselective 2-C-glycosyltransferases and 4-O-methyltransferases. Then, in Escherichia coli, we reconstruct the de novo biosynthetic pathway of 4-O-methyl gallic acid 2-C-β-D-glycoside, which is the direct precursor of bergenin and is conveniently esterified into bergenin by in situ acid treatment. Moreover, further metabolic engineering improves the production of bergenin to 1.41 g L-1 in a 3-L bioreactor. Our work provides a foundation for sustainable supply of bergenin and alleviates its resource shortage via a synthetic biology approach.
Collapse
Affiliation(s)
- Ruiqi Yan
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Binghan Xie
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China.
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China.
| | - Qi Liu
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China
| | - Shuqi Wang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Beijing, China.
- NHC Key Laboratory of Biosynthesis of Natural Products, Beijing, China.
| | - Lin Yang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
4
|
Cheng W, Fang X, Guan Z, Yao Y, Xu Z, Bi Y, Ren K, Li J, Chen F, Chen X, Ma W, Chu Z, Deng Z, Zhang Z, Lu L. Functional characterization and structural basis of a reversible glycosyltransferase involves in plant chemical defence. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2611-2624. [PMID: 37581303 PMCID: PMC10651139 DOI: 10.1111/pbi.14157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Plants experience numerous biotic stresses throughout their lifespan, such as pathogens and pests, which can substantially affect crop production. In response, plants have evolved various metabolites that help them withstand these stresses. Here, we show that two specialized metabolites in the herbaceous perennial Belamcanda chinensis, tectorigenin and its glycoside tectoridin, have diverse defensive effects against phytopathogenic microorganisms and antifeeding effects against insect pest. We further functionally characterized a 7-O-uridine diphosphate glycosyltransferase Bc7OUGT, which catalyses a novel reversible glycosylation of tectorigenin and tectoridin. To elucidate the catalytic mechanisms of Bc7OUGT, we solved its crystal structure in complex with UDP and UDP/tectorigenin respectively. Structural analysis revealed the Bc7OUGT possesses a narrow but novel substrate-binding pocket made up by plentiful aromatic residues. Further structure-guided mutagenesis of these residues increased both glycosylation and deglycosylation activities. The catalytic reversibility of Bc7OUGT was also successfully applied in an one-pot aglycon exchange reaction. Our findings demonstrated the promising biopesticide activity of tectorigenin and its glycosides, and the characterization and mechanistic study of Bc7OUGT could facilitate the design of novel reversible UGTs to produce valuable glycosides with health benefits for both plants and humans.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Integrated Traditional Chinese Medicine and Western MedicineZhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Xueting Fang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Zhifeng Guan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Yan Yao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Zhenni Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Yunya Bi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Kexin Ren
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhanChina
| | - Jiwen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Fangfang Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, Department of Genetics, College of Life SciencesWuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Zhengyu Zhang
- Department of Integrated Traditional Chinese Medicine and Western MedicineZhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Li Lu
- Department of Integrated Traditional Chinese Medicine and Western MedicineZhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
5
|
Wang M, Ji Q, Lai B, Liu Y, Mei K. Structure-function and engineering of plant UDP-glycosyltransferase. Comput Struct Biotechnol J 2023; 21:5358-5371. [PMID: 37965058 PMCID: PMC10641439 DOI: 10.1016/j.csbj.2023.10.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Natural products synthesized by plants have substantial industrial and medicinal values and are therefore attracting increasing interest in various related industries. Among the key enzyme families involved in the biosynthesis of natural products, uridine diphosphate-dependent glycosyltransferases (UGTs) play a crucial role in plants. In recent years, significant efforts have been made to elucidate the catalytic mechanisms and substrate recognition of plant UGTs and to improve them for desired functions. In this review, we presented a comprehensive overview of all currently published structures of plant UGTs, along with in-depth analyses of the corresponding catalytic and substrate recognition mechanisms. In addition, we summarized and evaluated the protein engineering strategies applied to improve the catalytic activities of plant UGTs, with a particular focus on high-throughput screening methods. The primary objective of this review is to provide readers with a comprehensive understanding of plant UGTs and to serve as a valuable reference for the latest techniques used to improve their activities.
Collapse
Affiliation(s)
- Mengya Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Qiushuang Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Bin Lai
- BMBF junior research group Biophotovoltaics, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Yirong Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Kunrong Mei
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
UDP-Glycosyltransferases in Edible Fungi: Function, Structure, and Catalytic Mechanism. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
UDP-glycosyltransferases (UGTs) are the most studied glycosyltransferases, and belong to large GT1 family performing the key roles in antibiotic synthesis, the development of bacterial glycosyltransferase inhibitors, and in animal inflammation. They transfer the glycosyl groups from nucleotide UDP-sugars (UDP-glucose, UDP-galactose, UDP-xylose, and UDP-rhamnose) to the acceptors including saccharides, proteins, lipids, and secondary metabolites. The present review summarized the recent of UDP-glycosyltransferases, including their structures, functions, and catalytic mechanism, especially in edible fungi. The future perspectives and new challenges were also summarized to understand of their structure–function relationships in the future. The outputs in this field could provide a reference to recognize function, structure, and catalytic mechanism of UDP-glycosyltransferases for understanding the biosynthesis pathways of secondary metabolites, such as hydrocarbons, monoterpenes, sesquiterpene, and polysaccharides in edible fungi.
Collapse
|
7
|
Badiali C, Petruccelli V, Brasili E, Pasqua G. Xanthones: Biosynthesis and Trafficking in Plants, Fungi and Lichens. PLANTS (BASEL, SWITZERLAND) 2023; 12:694. [PMID: 36840041 PMCID: PMC9967055 DOI: 10.3390/plants12040694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Xanthones are a class of secondary metabolites produced by plant organisms. They are characterized by a wide structural variety and numerous biological activities that make them valuable metabolites for use in the pharmaceutical field. This review shows the current knowledge of the xanthone biosynthetic pathway with a focus on the precursors and the enzymes involved, as well as on the cellular and organ localization of xanthones in plants. Xanthone biosynthesis in plants involves the shikimate and the acetate pathways which originate in plastids and endoplasmic reticulum, respectively. The pathway continues following three alternative routes, two phenylalanine-dependent and one phenylalanine-independent. All three routes lead to the biosynthesis of 2,3',4,6-tetrahydroxybenzophenone, which is the central intermediate. Unlike plants, the xanthone core in fungi and lichens is wholly derived from polyketide. Although organs and tissues synthesizing and accumulating xanthones are known in plants, no information is yet available on their subcellular and cellular localization in fungi and lichens. This review highlights the studies published to date on xanthone biosynthesis and trafficking in plant organisms, from which it emerges that the mechanisms underlying their synthesis need to be further investigated in order to exploit them for application purposes.
Collapse
|
8
|
Ouadhi S, López DMV, Mohideen FI, Kwan DH. Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics. Protein Eng Des Sel 2023; 36:gzac010. [PMID: 36444941 DOI: 10.1093/protein/gzac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 12/03/2022] Open
Abstract
Many glycosylated small molecule natural products and glycoprotein biologics are important in a broad range of therapeutic and industrial applications. The sugar moieties that decorate these compounds often show a profound impact on their biological functions, thus biocatalytic methods for controlling their glycosylation are valuable. Enzymes from nature are useful tools to tailor bioproduct glycosylation but these sometimes have limitations in their catalytic efficiency, substrate specificity, regiospecificity, stereospecificity, or stability. Enzyme engineering strategies such as directed evolution or semi-rational and rational design have addressed some of the challenges presented by these limitations. In this review, we highlight some of the recent research on engineering enzymes to tailor the glycosylation of small molecule natural products (including alkaloids, terpenoids, polyketides, and peptides), as well as the glycosylation of protein biologics (including hormones, enzyme-replacement therapies, enzyme inhibitors, vaccines, and antibodies).
Collapse
Affiliation(s)
- Sara Ouadhi
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - Dulce María Valdez López
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| | - F Ifthiha Mohideen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - David H Kwan
- Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 2A6, Canada
- PROTEO, Quebec Network for Research on Protein Function, Structure, and Engineering, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Liu Y, Li X, Sui S, Tang J, Chen D, Kang Y, Xie K, Liu J, Lan J, Wu L, Chen R, Peng Y, Dai J. Structural diversification of bioactive bibenzyls through modular co-culture leading to the discovery of a novel neuroprotective agent. Acta Pharm Sin B 2022; 13:1771-1785. [PMID: 37139416 PMCID: PMC10149896 DOI: 10.1016/j.apsb.2022.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 11/27/2022] Open
Abstract
Bibenzyls, a kind of important plant polyphenols, have attracted growing attention for their broad and remarkable pharmacological activities. However, due to the low abundance in nature, uncontrollable and environmentally unfriendly chemical synthesis processes, these compounds are not readily accessible. Herein, one high-yield bibenzyl backbone-producing Escherichia coli strain was constructed by using a highly active and substrate-promiscuous bibenzyl synthase identified from Dendrobium officinale in combination with starter and extender biosynthetic enzymes. Three types of efficiently post-modifying modular strains were engineered by employing methyltransferases, prenyltransferase, and glycosyltransferase with high activity and substrate tolerance together with their corresponding donor biosynthetic modules. Structurally different bibenzyl derivatives were tandemly and/or divergently synthesized by co-culture engineering in various combination modes. Especially, a prenylated bibenzyl derivative (12) was found to be an antioxidant that exhibited potent neuroprotective activity in the cellular and rat models of ischemia stroke. RNA-seq, quantitative RT-PCR, and Western-blot analysis demonstrated that 12 could up-regulate the expression level of an apoptosis-inducing factor, mitochondria associated 3 (Aifm3), suggesting that Aifm3 might be a new target in ischemic stroke therapy. This study provides a flexible plug-and-play strategy for the easy-to-implement synthesis of structurally diverse bibenzyls through a modular co-culture engineering pipeline for drug discovery.
Collapse
|
10
|
Zhang M, Yi Y, Gao B, Su H, Bao Y, Shi X, Wang H, Li F, Ye M, Qiao X. Functional Characterization and Protein Engineering of a Triterpene 3‐/6‐/2′‐
O
‐Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Bai‐Han Gao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Hui‐Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Yang‐Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Xiao‐Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Hai‐Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Fu‐Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences University of Science and Technology of China Hefei Anhui 230026 China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
11
|
Zhang M, Yi Y, Gao BH, Su HF, Bao YO, Shi XM, Wang HD, Li FD, Ye M, Qiao X. Functional Characterization and Protein Engineering of a Triterpene 3-/6-/2'-O-Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew Chem Int Ed Engl 2021; 61:e202113587. [PMID: 34894044 DOI: 10.1002/anie.202113587] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 01/13/2023]
Abstract
Engineering the function of triterpene glucosyltransferases (GTs) is challenging due to the large size of the sugar acceptors. In this work, we identified a multifunctional glycosyltransferase AmGT8 catalyzing triterpene 3-/6-/2'-O-glycosylation from the medicinal plant Astragalus membranaceus. To engineer its regiospecificity, a small mutant library was built based on semi-rational design. Variants A394F, A394D, and T131V were found to catalyze specific 6-O, 3-O, and 2'-O glycosylation, respectively. The origin of regioselectivity of AmGT8 and its A394F variant was studied by molecular dynamics and hydrogen deuterium exchange mass spectrometry. Residue 394 is highly conserved as A/G and is critical for the regiospecificity of the C- and O-GTs TcCGT1 and GuGT10/14. Finally, astragalosides III and IV were synthesized by mutants A394F, T131V and P192E. This work reports biocatalysts for saponin synthesis and gives new insights into protein engineering of regioselectivity in plant GTs.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bai-Han Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hui-Fei Su
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xiao-Meng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hai-Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale, Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
12
|
Chen D, Fan S, Yang Z, Dai J. Biocatalytic Application of a Membrane‐Bound Coumarin C‐Glucosyltransferase in the Synthesis of Coumarin and Benzofuran C‐Glucosides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs NHC Key Laboratory of Biosynthesis of Natural Products Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Shuai Fan
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College 1 Tian Tan Xi Li Beijing 100050 People's Republic of China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences and Peking Union Medical College 1 Tian Tan Xi Li Beijing 100050 People's Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs NHC Key Laboratory of Biosynthesis of Natural Products Institute of Materia Medica Chinese Academy of Medical Sciences and Peking Union Medical College 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| |
Collapse
|
13
|
Kurze E, Wüst M, Liao J, McGraphery K, Hoffmann T, Song C, Schwab W. Structure-function relationship of terpenoid glycosyltransferases from plants. Nat Prod Rep 2021; 39:389-409. [PMID: 34486004 DOI: 10.1039/d1np00038a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are physiologically active substances that are of great importance to humans. Their physicochemical properties are modified by glycosylation, in terms of polarity, volatility, solubility and reactivity, and their bioactivities are altered accordingly. Significant scientific progress has been made in the functional study of glycosylated terpenes and numerous plant enzymes involved in regio- and enantioselective glycosylation have been characterized, a reaction that remains chemically challenging. Crucial clues to the mechanism of terpenoid glycosylation were recently provided by the first crystal structures of a diterpene glycosyltransferase UGT76G1. Here, we review biochemically characterized terpenoid glycosyltransferases, compare their functions and primary structures, discuss their acceptor and donor substrate tolerance and product specificity, and elaborate features of the 3D structures of the first terpenoid glycosyltransferases from plants.
Collapse
Affiliation(s)
- Elisabeth Kurze
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Matthias Wüst
- Chair of Food Chemistry, Institute of Nutritional and Food Sciences, University of Bonn, Endenicher Allee 19C, 53115 Bonn, Germany.
| | - Jieren Liao
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Kate McGraphery
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Thomas Hoffmann
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University Hefei, Anhui 230036, People's Republic of China.
| | - Wilfried Schwab
- Biotechnology of Natural Products, TUM School of Life Sciences, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany. .,State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
14
|
Liu H, Tegl G, Nidetzky B. Glycosyltransferase Co‐Immobilization for Natural Product Glycosylation: Cascade Biosynthesis of the
C
‐Glucoside Nothofagin with Efficient Reuse of Enzymes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001549] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Gregor Tegl
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology (acib) Petersgasse 14 8010 Graz Austria
| |
Collapse
|
15
|
Putkaradze N, Teze D, Fredslund F, Welner DH. Natural product C-glycosyltransferases - a scarcely characterised enzymatic activity with biotechnological potential. Nat Prod Rep 2020; 38:432-443. [PMID: 33005913 DOI: 10.1039/d0np00040j] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to 2020C-Glycosyltransferases are enzymes that catalyse the transfer of sugar molecules to carbon atoms in substituted aromatic rings of a variety of natural products. The resulting β-C-glycosidic bond is more stable in vivo than most O-glycosidic bonds, hence offering an attractive modulation of a variety of compounds with multiple biological activities. While C-glycosylated natural products have been known for centuries, our knowledge of corresponding C-glycosyltransferases is scarce. Here, we discuss commonalities and differences in the known C-glycosyltransferases, review attempts to leverage them as synthetic biocatalysts, and discuss current challenges and limitations in their research and application.
Collapse
Affiliation(s)
- Natalia Putkaradze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
16
|
Hughes RR, Shaaban KA, Ponomareva LV, Horn J, Zhang C, Zhan CG, Voss SR, Leggas M, Thorson JS. OleD Loki as a Catalyst for Hydroxamate Glycosylation. Chembiochem 2020; 21:952-957. [PMID: 31621997 PMCID: PMC7124993 DOI: 10.1002/cbic.201900601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Herein we describe the ability of the permissive glycosyltransferase (GT) OleD Loki to convert a diverse set of >15 histone deacetylase (HDAC) inhibitors (HDACis) into their corresponding hydroxamate glycosyl esters. Representative glycosyl esters were subsequently evaluated in assays for cancer cell line cytotoxicity, chemical and enzymatic stability, and axolotl embryo tail regeneration. Computational substrate docking models were predictive of enzyme-catalyzed turnover and suggest certain HDACis may form unproductive, potentially inhibitory, complexes with GTs.
Collapse
Affiliation(s)
- Ryan R Hughes
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jamie Horn
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chunhui Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Chang-Guo Zhan
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - S Randal Voss
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, Ambystoma Genetic Stock Center, University of Kentucky, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Markos Leggas
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| |
Collapse
|
17
|
Klein-Júnior LC, Campos A, Niero R, Corrêa R, Vander Heyden Y, Filho VC. Xanthones and Cancer: from Natural Sources to Mechanisms of Action. Chem Biodivers 2020; 17:e1900499. [PMID: 31794156 DOI: 10.1002/cbdv.201900499] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Xanthones are a class of heterocyclic natural products that have been widely studied for their pharmacological potential. In fact, they have been serving as scaffolds for the design of derivatives focusing on drug development. One of the main study targets of xanthones is their anticancer activity. Several compounds belonging to this class have already demonstrated cytotoxic and antitumor effects, making it a promising group for further exploration. This review therefore focuses on recently published studies, emphasizing their natural and synthetic sources and describing the main mechanisms of action responsible for the anticancer effect of promising xanthones.
Collapse
Affiliation(s)
- Luiz C Klein-Júnior
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Adriana Campos
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rivaldo Niero
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Rogério Corrêa
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel - VUB, B-1090, Brussels, Belgium
| | - Valdir Cechinel Filho
- Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí - UNIVALI, 88302-901, Itajaí, Brazil
| |
Collapse
|
18
|
S-glycosyltransferase UGT74B1 can glycosylate both S- and O-acceptors: mechanistic insights through substrate specificity. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
19
|
He J, Zhao P, Hu Z, Liu S, Kuang Y, Zhang M, Li B, Yun C, Qiao X, Ye M. Molecular and Structural Characterization of a Promiscuous
C
‐Glycosyltransferase from
Trollius chinensis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jun‐Bin He
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Peng Zhao
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Zhi‐Min Hu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Cai‐Hong Yun
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western MedicineSchool of Basic Medical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of EducationSchool of Pharmaceutical SciencesPeking University 38 Xueyuan Road Beijing 100191 China
| |
Collapse
|
20
|
He JB, Zhao P, Hu ZM, Liu S, Kuang Y, Zhang M, Li B, Yun CH, Qiao X, Ye M. Molecular and Structural Characterization of a Promiscuous C-Glycosyltransferase from Trollius chinensis. Angew Chem Int Ed Engl 2019; 58:11513-11520. [PMID: 31163097 DOI: 10.1002/anie.201905505] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022]
Abstract
Herein, the catalytic promiscuity of TcCGT1, a new C-glycosyltransferase (CGT) from the medicinal plant Trollius chinensis is explored. TcCGT1 could efficiently and regio-specifically catalyze the 8-C-glycosylation of 36 flavones and other flavonoids and could also catalyze the O-glycosylation of diverse phenolics. The crystal structure of TcCGT1 in complex with uridine diphosphate was determined at 1.85 Å resolution. Molecular docking revealed a new model for the catalytic mechanism of TcCGT1, which is initiated by the spontaneous deprotonation of the substrate. The spacious binding pocket explains the substrate promiscuity, and the binding pose of the substrate determines C- or O-glycosylation activity. Site-directed mutagenesis at two residues (I94E and G284K) switched C- to O-glycosylation. TcCGT1 is the first plant CGT with a crystal structure and the first flavone 8-C-glycosyltransferase described. This provides a basis for designing efficient glycosylation biocatalysts.
Collapse
Affiliation(s)
- Jun-Bin He
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Peng Zhao
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhi-Min Hu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Shuang Liu
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yi Kuang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Cai-Hong Yun
- Department of Biochemistry and Biophysics &, Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs & Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
21
|
Ati J, Lafite P, Daniellou R. Enzymatic synthesis of glycosides: from natural O- and N-glycosides to rare C- and S-glycosides. Beilstein J Org Chem 2017; 13:1857-1865. [PMID: 29062404 PMCID: PMC5629408 DOI: 10.3762/bjoc.13.180] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/17/2017] [Indexed: 01/02/2023] Open
Abstract
Carbohydrate related enzymes, like glycosyltransferases and glycoside hydrolases, are nowadays more easily accessible and are thought to represent powerful and greener alternatives to conventional chemical glycosylation procedures. The knowledge of their corresponding mechanisms has already allowed the development of efficient biocatalysed syntheses of complex O-glycosides. These enzymes can also now be applied to the formation of rare or unnatural glycosidic linkages.
Collapse
Affiliation(s)
- Jihen Ati
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Pierre Lafite
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Richard Daniellou
- ICOA UMR CNRS 7311, University of Orléans, rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| |
Collapse
|
22
|
Feng J, Zhang P, Cui Y, Li K, Qiao X, Zhang YT, Li SM, Cox RJ, Wu B, Ye M, Yin WB. Regio- and StereospecificO-Glycosylation of Phenolic Compounds Catalyzed by a Fungal Glycosyltransferase fromMucor hiemalis. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jin Feng
- State Key Laboratory of Mycology, Institute of Microbiology; Chinese Academy of Sciences; 100101 Beijing People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; 100191 Beijing People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; 100101 Beijing People's Republic of China
| | - Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology; Chinese Academy of Sciences; 100101 Beijing People's Republic of China
- Savaid Medical School; University of Chinese Academy of Sciences; 100049 Beijing People's Republic of China
| | - Yinglu Cui
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; 100101 Beijing People's Republic of China
| | - Kai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; 100191 Beijing People's Republic of China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; 100191 Beijing People's Republic of China
| | - Ying-Tao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; 100191 Beijing People's Republic of China
| | - Shu-Ming Li
- Philipps-Universität Marburg; Institut für Pharmazeutische Biologie und Biotechnologie; Robert-Koch-Strasse 4 35037 Marburg Germany
| | - Russell J. Cox
- Institute for Organic Chemistry; Leibniz Universität Hannover and Centre of Biomolecular Drug Research (BMWZ); Schneiderberg 1B 30167 Hannover Germany
| | - Bian Wu
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; 100101 Beijing People's Republic of China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Peking University; 100191 Beijing People's Republic of China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology; Chinese Academy of Sciences; 100101 Beijing People's Republic of China
- Savaid Medical School; University of Chinese Academy of Sciences; 100049 Beijing People's Republic of China
| |
Collapse
|
23
|
Hughes RR, Shaaban KA, Zhang J, Cao H, Phillips GN, Thorson JS. OleD Loki as a Catalyst for Tertiary Amine and Hydroxamate Glycosylation. Chembiochem 2017; 18:363-367. [PMID: 28067448 PMCID: PMC5355705 DOI: 10.1002/cbic.201600676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 12/23/2022]
Abstract
We describe the ability of an engineered glycosyltransferase (OleD Loki) to catalyze the N-glycosylation of tertiary-amine-containing drugs and trichostatin hydroxamate glycosyl ester formation. As such, this study highlights the first bacterial model catalyst for tertiary-amine N-glycosylation and further expands the substrate scope and synthetic potential of engineered OleDs. In addition, this work could open the door to the discovery of similar capabilities among other permissive bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Ryan R Hughes
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Hongnan Cao
- Department of Chemistry, Rice University, P. O. Box 1892, MS 60, Houston, TX, 77251, USA
| | - George N Phillips
- Department of Chemistry, Rice University, P. O. Box 1892, MS 60, Houston, TX, 77251, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| |
Collapse
|
24
|
Xie K, Chen R, Chen D, Li J, Wang R, Yang L, Dai J. EnzymaticN-Glycosylation of Diverse Arylamine Aglycones by a Promiscuous Glycosyltransferase fromCarthamus tinctorius. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Jianhua Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Ruishan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| | - Lin Yang
- College of Life and Environmental Sciences; Minzu University of China; 27 Zhong Guan Cun Southern Street Beijing 100081 People's Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 People's Republic of China
| |
Collapse
|
25
|
Gutmann A, Nidetzky B. Unlocking the Potential of Leloir Glycosyltransferases for Applied Biocatalysis: Efficient Synthesis of Uridine 5′-Diphosphate-Glucose by Sucrose Synthase. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600754] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
26
|
Chen D, Sun L, Chen R, Xie K, Yang L, Dai J. Enzymatic Synthesis of Acylphloroglucinol 3-C
-Glucosides from 2-O
-Glucosides using a C
-Glycosyltransferase from Mangifera indica. Chemistry 2016; 22:5873-7. [DOI: 10.1002/chem.201600411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 P.R. China
| | - Lili Sun
- College of Life and Environmental Sciences; Minzu University of China; 27 Zhong Guan Cun Southern Street Beijing 100081 P.R. China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 P.R. China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 P.R. China
| | - Lin Yang
- College of Life and Environmental Sciences; Minzu University of China; 27 Zhong Guan Cun Southern Street Beijing 100081 P.R. China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences and Peking Union Medical College; 1 Xian Nong Tan Street Beijing 100050 P.R. China
| |
Collapse
|