1
|
Fop S, Vivani R, Masci S, Casciola M, Donnadio A. Anhydrous Superprotonic Conductivity in the Zirconium Acid Triphosphate ZrH 5 (PO 4 ) 3. Angew Chem Int Ed Engl 2023; 62:e202218421. [PMID: 36856155 DOI: 10.1002/anie.202218421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
The development of solid-state proton conductors with high proton conductivity at low temperatures is crucial for the implementation of hydrogen-based technologies for portable and automotive applications. Here, we report on the discovery of a new crystalline metal acid triphosphate, ZrH5 (PO4 )3 (ZP3), which exhibits record-high proton conductivity of 0.5-3.1×10-2 S cm-1 in the range 25-110 °C in anhydrous conditions. This is the highest anhydrous proton conductivity ever reported in a crystalline solid proton conductor in the range 25-110 °C. Superprotonic conductivity in ZP3 is enabled by extended defective frustrated hydrogen bond chains, where the protons are dynamically disordered over two oxygen centers. The high proton conductivity and stability in anhydrous conditions make ZP3 an excellent candidate for innovative applications in fuel cells without the need for complex water management systems, and in other energy technologies requiring fast proton transfer.
Collapse
Affiliation(s)
- Sacha Fop
- The Chemistry Department, University of Aberdeen, Aberdeen, AB24 3UE, UK
- ISIS Facility, Rutherford Appleton Laboratory, Harwell, OX11 0QX, UK
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturali per Applicazioni Chimiche, Fisiche e Biomediche, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Silvia Masci
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Mario Casciola
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturali per Applicazioni Chimiche, Fisiche e Biomediche, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| |
Collapse
|
2
|
Metal–Organic Frameworks for Ion Conduction. Angew Chem Int Ed Engl 2022; 61:e202206512. [DOI: 10.1002/anie.202206512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/07/2022]
|
3
|
Chen J, Mei Q, Chen Y, Marsh C, An B, Han X, Silverwood IP, Li M, Cheng Y, He M, Chen X, Li W, Kippax-Jones M, Crawshaw D, Frogley MD, Day SJ, García-Sakai V, Manuel P, Ramirez-Cuesta AJ, Yang S, Schröder M. Highly Efficient Proton Conduction in the Metal-Organic Framework Material MFM-300(Cr)·SO 4(H 3O) 2. J Am Chem Soc 2022; 144:11969-11974. [PMID: 35775201 PMCID: PMC9348827 DOI: 10.1021/jacs.2c04900] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The development of
materials showing rapid proton conduction with
a low activation energy and stable performance over a wide temperature
range is an important and challenging line of research. Here, we report
confinement of sulfuric acid within porous MFM-300(Cr) to give MFM-300(Cr)·SO4(H3O)2, which exhibits a record-low
activation energy of 0.04 eV, resulting in stable proton conductivity
between 25 and 80 °C of >10–2 S cm–1. In situ synchrotron X-ray powder diffraction (SXPD),
neutron powder diffraction (NPD), quasielastic neutron scattering
(QENS), and molecular dynamics (MD) simulation reveal the pathways
of proton transport and the molecular mechanism of proton diffusion
within the pores. Confined sulfuric acid species together with adsorbed
water molecules play a critical role in promoting the proton transfer
through this robust network to afford a material in which proton conductivity
is almost temperature-independent.
Collapse
Affiliation(s)
- Jin Chen
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Qingqing Mei
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christopher Marsh
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bing An
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xue Han
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ian P Silverwood
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Ming Li
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Meng He
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Xi Chen
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Weiyao Li
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Meredydd Kippax-Jones
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.,Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, United Kingdom
| | - Danielle Crawshaw
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, United Kingdom
| | - Sarah J Day
- Diamond Light Source, Harwell Science Campus, Oxfordshire OX11 0DE, United Kingdom
| | - Victoria García-Sakai
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Pascal Manuel
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sihai Yang
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martin Schröder
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
4
|
Szufla M, Choroś A, Nitek W, Matoga D. A Porous Sulfonated 2D Zirconium Metal-Organic Framework as a Robust Platform for Proton Conduction. Chemistry 2022; 28:e202200835. [PMID: 35510822 DOI: 10.1002/chem.202200835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/06/2022]
Abstract
By using the strategy of pre-assembly chlorosulfonation applied to a linker precursor, the first sulfonated zirconium metal-organic framework (JUK-14) with two-dimensional (2D) structure, was synthesized. Single-crystal X-ray diffraction reveals that the material is built of Zr6 O4 (OH)4 (COO)8 oxoclusters, doubly 4-connected by angular dicarboxylates, and stacked in layers spaced 1.5 nm apart by the presence of sulfonic groups. JUK-14 exhibits excellent hydrothermal stability, permanent porosity confirmed by gas adsorption studies, and shows high (>10-4 S/cm) and low (<10-8 S/cm) proton conductivity under humidified and anhydrous conditions, respectively. Post-synthesis inclusion of imidazole improves the overall conductivity increasing it to 1.7×10-3 S/cm at 60 °C and 90 % relative humidity, and by 3 orders of magnitude at 160 °C. The combination of 2D porous nature with robustness of zirconium MOFs offers new opportunities for exploration of the material towards energy and environmental applications.
Collapse
Affiliation(s)
- Monika Szufla
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Aleksandra Choroś
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Gronostajowa 2, Poland
| |
Collapse
|
5
|
Xue W, Sewell CD, Zou Q, Lin Z. Metal‐organic frameworks for ion conduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wendan Xue
- Nankai University Key Laboratory of Pollution Processes and Environmental Criteria CHINA
| | | | - Qixing Zou
- Nankai University Key Laboratory of Pollution Processes and Environmental Criteria CHINA
| | - Zhiqun Lin
- Georgia Institute of Technology School of Materials Science and Engineering 771 Ferst Dr., NW3100K, Molecular Science & Engineering Bldg. 30332 Atlanta UNITED STATES
| |
Collapse
|
6
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Dai Q, Zhao Z, Shi M, Deng C, Zhang H, Li X. Ion conductive membranes for flow batteries: Design and ions transport mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Feng L, Zeng TY, Hou HB, Zhou H, Tian J. Theoretical hydrogen bonding calculations and proton conduction for Eu(iii)-based metal-organic framework. RSC Adv 2021; 11:11495-11499. [PMID: 35423605 PMCID: PMC8698213 DOI: 10.1039/d1ra01528a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
A water-mediated proton-conducting Eu(iii)-MOF has been synthesized, which provides a stable proton transport channel that was confirmed by theoretical calculation. The investigation of proton conduction shows that the conductivity of Eu(iii)-MOF obtained at 353 K and 98% RH is 3.5 × 10-3 S cm-1, comparable to most of the Ln(iii)-MOF based proton conductors.
Collapse
Affiliation(s)
- Lu Feng
- School of Resource and Environmental Science, Wuhan University Wuhan 430072 Hubei China
| | - Tian-Yu Zeng
- School of Resource and Environmental Science, Wuhan University Wuhan 430072 Hubei China
| | - Hao-Bo Hou
- School of Resource and Environmental Science, Wuhan University Wuhan 430072 Hubei China
| | - Hong Zhou
- College of Chemistry and Environmental Technology, Wuhan Institute of Technology Wuhan 430073 Hubei China
| | - Jian Tian
- Hangzhou Yanqu Information Technology Co., Ltd Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen er West Road, Xihu District Hangzhou City Zhejiang Province 310003 P. R. China
| |
Collapse
|
9
|
Yu JW, Yu HJ, Yao ZY, Li ZH, Ren Q, Luo HB, Zou Y, Wang L, Ren XM. A water-stable open-framework zirconium (iv) phosphate and its water-assisted high proton conductivity. CrystEngComm 2021. [DOI: 10.1039/d1ce00852h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water stable open-framework zirconium(iv) phosphate (ZrP) has a low anhydrous proton conductivity of 7.73 × 10−7 S cm−1 at 220 °C, and a water assisted high proton conductivity of 4.41 × 10−2 S cm−1 at 60 °C and 98% RH.
Collapse
Affiliation(s)
- Jing-Wei Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Hai-Jiao Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Zhi-Yuan Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Zi-Han Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Qiu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Yang Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Lifeng Wang
- Institute for Frontier Materials (IFM), Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- State Key Lab & Coordination Chemistry Institute, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
10
|
Kolokolov DI, Lim D, Kitagawa H. Characterization of Proton Dynamics for the Understanding of Conduction Mechanism in Proton Conductive Metal‐Organic Frameworks. CHEM REC 2020; 20:1297-1313. [DOI: 10.1002/tcr.202000072] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/24/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Daniil I. Kolokolov
- Siberian Branch of Russian Academy of Sciences Boreskov Institute of Catalysis Prospekt Akademika Lavrentieva 5 Novosibirsk 630090 Russia
- Department of Physics Novosibirsk State University Pirogova Street 2 Novosibirsk 630090 Russia
| | - Dae‐Woon Lim
- Department of Chemistry and Medical Chemistry Yonsei University 1 Yonseidae-gil Wonju, Gangwon-do 26493 Korea
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science Kyoto University Kitashirakawa-Oiwakecho Sakyo-ku, Kyoto 606-8502 Japan
| |
Collapse
|
11
|
Li X, Zhang H, Yu H, Xia J, Zhu YB, Wu HA, Hou J, Lu J, Ou R, Easton CD, Selomulya C, Hill MR, Jiang L, Wang H. Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001777. [PMID: 32390263 DOI: 10.1002/adma.202001777] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
The construction of biological proton channel analogues has attracted substantial interest owing to their wide potential in separation of ions, sensing, and energy conversion. Here, metal-organic framework (MOF)/polymer heterogeneous nanochannels are presented, in which water molecules are confined to disordered clusters in the nanometer-sized polymer regions and to ordered chains with unique molecular configurations in the 1D sub-1-nm porous MOF regions, to realize unidirectional, fast, and selective proton transport properties, analogous to natural proton channels. Given the nano-to-subnano confined water junctions, experimental proton conductivities in the polymer-to-MOF direction of the channels are much higher than those in the opposite direction, showing a high rectification up to 500 and one to two orders of magnitude enhancement compared to the conductivity of proton transport in bulk water. The channels also show a good proton selectivity over other cations. Theoretical simulations further reveal that the preferential and fast proton conduction in the nano-to-subnano channel direction is attributed to extremely low energy barriers for proton transport from disordered to ordered water clusters. This study opens a novel approach to regulate ion permeability and selectivity of artificial ion channels.
Collapse
Affiliation(s)
- Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hao Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Jun Lu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ranwen Ou
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
12
|
Li X, Zhang H, Hou J, Ou R, Zhu Y, Zhao C, Qian T, Easton CD, Selomulya C, Hill MR, Wang H. Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. J Am Chem Soc 2020; 142:9827-9833. [DOI: 10.1021/jacs.0c03554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, 3168, Australia
| | - Ranwen Ou
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Chen Zhao
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tianyue Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | | - Matthew R. Hill
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Manufacturing, CSIRO, Clayton, 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Zeng Q, Xian WR, Zhong YH, Chung LH, Liao WM, He J. Highly enhanced hydrated proton conductivity by combination of post-synthetic oxidation and acidification in a zirconium-organic framework. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Pal A, Pal SC, Otsubo K, Lim D, Chand S, Kitagawa H, Das MC. A Phosphate‐Based Silver–Bipyridine 1D Coordination Polymer with Crystallized Phosphoric Acid as Superprotonic Conductor. Chemistry 2020; 26:4607-4612. [DOI: 10.1002/chem.201905650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Arun Pal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur WB 721302 India
| | - Shyam Chand Pal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur WB 721302 India
| | - Kazuya Otsubo
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa Oiwake-cho Sakyo-ku Kyoto 606-8502 Japan
| | - Dae‐Woon Lim
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa Oiwake-cho Sakyo-ku Kyoto 606-8502 Japan
- Current address: Department of Chemistry and Medical Chemistry Yonsei University Wonju Kangwondo 26493 Republic of Korea
| | - Santanu Chand
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur WB 721302 India
| | - Hiroshi Kitagawa
- Division of Chemistry Graduate School of Science Kyoto University Kitashirakawa Oiwake-cho Sakyo-ku Kyoto 606-8502 Japan
| | - Madhab C. Das
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur WB 721302 India
| |
Collapse
|
15
|
Garai A, Kumar AG, Banerjee S, Biradha K. Proton‐Conducting Hydrogen‐Bonded 3D Frameworks of Imidazo‐Pyridine‐Based Coordination Complexes Containing Naphthalene Disulfonates in Rhomboid Channels. Chem Asian J 2019; 14:4389-4394. [DOI: 10.1002/asia.201901338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/28/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Abhijit Garai
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur- 721302 India
| | - Anaparthi Ganesh Kumar
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur- 721302 India
| | - Susanta Banerjee
- Materials Science CentreIndian Institute of Technology Kharagpur Kharagpur- 721302 India
| | - Kumar Biradha
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur- 721302 India
| |
Collapse
|
16
|
Devautour‐Vinot S, Sanil ES, Geneste A, Ortiz V, Yot PG, Chang J, Maurin G. Guest‐Assisted Proton Conduction in the Sulfonic Mesoporous MIL‐101 MOF. Chem Asian J 2019; 14:3561-3565. [DOI: 10.1002/asia.201900608] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Sabine Devautour‐Vinot
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| | - Eriyakkadan S. Sanil
- Research Group for NanocatalystKorea Research Institute of Chemical Technology (KRICT) Gajeongro 141 Yuseong Daejeon 305-606 South Korea
| | - Amine Geneste
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| | - Vanessa Ortiz
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| | - Pascal G. Yot
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| | - Jong‐San Chang
- Research Group for NanocatalystKorea Research Institute of Chemical Technology (KRICT) Gajeongro 141 Yuseong Daejeon 305-606 South Korea
- Department of ChemistrySungkyunkwan University Suwon 440-476 South Korea
| | - Guillaume Maurin
- Institut Charles Gerhardt MontpellierUMR 5253 CNRS UM ENSCMUniversité Montpellier Pl. E. Bataillon 34095 Montpellier cedex 05 France
| |
Collapse
|
17
|
Bakuru VR, DMello ME, Kalidindi SB. Metal-Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. Chemphyschem 2019; 20:1177-1215. [PMID: 30768752 DOI: 10.1002/cphc.201801147] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/09/2019] [Indexed: 12/19/2022]
Abstract
Hydrogen is in limelight as an environmental benign alternative to fossil fuels from few decades. To bring the concept of hydrogen economy from academic labs to real world certain challenges need to be addressed in the areas of hydrogen production, storage, and its use in fuel cells. Crystalline metal-organic frameworks (MOFs) with unprecedented surface areas are considered as potential materials for addressing the challenges in each of these three areas. MOFs combine the diverse chemistry of molecular linkers with their ability to coordinate to metal ions and clusters. The unabated flurry of research using MOFs in the context of hydrogen energy related activities in the past decade demonstrates the versatility of this class of materials. In the present review, we discuss major strategical advances that have taken place in the field of "hydrogen economy and MOFs" and point out issues requiring further attention.
Collapse
Affiliation(s)
- Vasudeva Rao Bakuru
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| | - Marilyn Esclance DMello
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| | - Suresh Babu Kalidindi
- Materials science division, Poornaprajna Institute of Scientific Research Devanahalli, Bangalore Rural, 576164, India
| |
Collapse
|
18
|
Chand S, Pal SC, Pal A, Ye Y, Lin Q, Zhang Z, Xiang S, Das MC. Metalo Hydrogen-Bonded Organic Frameworks (MHOFs) as New Class of Crystalline Materials for Protonic Conduction. Chemistry 2019; 25:1691-1695. [PMID: 30462360 DOI: 10.1002/chem.201805177] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 11/05/2022]
Abstract
Recently, proton conduction has been a thread of high potential owing to its wide applications in fuel-cell technology. In the search for a new class of crystalline materials for protonic conductors, three metalo hydrogen-bonded organic frameworks (MHOFs) based on [Ni(Imdz)6 ]2+ and arene disulfonates (MHOF1 and MHOF2) or dicarboxylate (MHOF3) have been reported (Imdz=imidazole). The presence of an ionic backbone with charge-assisted H-bonds, coupled with amphiprotic imidazoles made these MHOFs protonic conductors, exhibiting conduction values of 0.75×10-3 , 3.5×10-4 and 0.97×10-3 S cm-1 , respectively, at 80 °C and 98 % relative humidity, which are comparable to other crystalline metal-organic framework, coordination polymer, polyoxometalate, covalent organic framework, and hydrogen-bonded organic framework materials. This report initiates the usage of MHOF materials as a new class of solid-state proton conductors.
Collapse
Affiliation(s)
- Santanu Chand
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Yingxiang Ye
- College of Materials Science and Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, PR China
| | - Quanjie Lin
- College of Materials Science and Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, PR China
| | - Zhangjing Zhang
- College of Materials Science and Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, PR China
| | - Shengchang Xiang
- College of Materials Science and Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, PR China
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
19
|
Zhu M, Han L, Wang QQ, Wei MJ, Su T, Sun CY, Wang XL, Su ZM. An ultra-stable porous coordination polymer for water-mediated proton conduction. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Chen S, Lucier BEG, Luo W, Xie X, Feng K, Chan H, Terskikh VV, Sun X, Sham TK, Workentin MS, Huang Y. Loading across the Periodic Table: Introducing 14 Different Metal Ions To Enhance Metal-Organic Framework Performance. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30296-30305. [PMID: 30124282 DOI: 10.1021/acsami.8b08496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Loading metal guests within metal-organic frameworks (MOFs) via secondary functional groups is a promising route for introducing or enhancing MOF performance in various applications. In this work, 14 metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Zn2+, Co2+, Mn2+, Ag+, Cd2+, La3+, In3+, and Pb2+) have been successfully introduced within the MIL-121 MOF using a cost-efficient route involving free carboxylic groups on the linker. The local and long-range structure of the metal-loaded MOFs is characterized using multinuclear solid-state NMR and X-ray diffraction methods. Li/Mg/Ca-loaded MIL-121 and Ag nanoparticle-loaded MIL-121 exhibit enhanced H2 and CO2 adsorption; Ag nanoparticle-loaded MIL-121 also demonstrates remarkable catalytic activity in the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Shoushun Chen
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Bryan E G Lucier
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Wilson Luo
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Xinkai Xie
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) & Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Jiangsu 215123 , P. R. China
| | - Kun Feng
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) & Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Jiangsu 215123 , P. R. China
| | - Hendrick Chan
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Victor V Terskikh
- Department of Chemistry , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Xuhui Sun
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM) & Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Jiangsu 215123 , P. R. China
| | - Tsun-Kong Sham
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Mark S Workentin
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | - Yining Huang
- Department of Chemistry , University of Western Ontario , London , Ontario N6A 5B7 , Canada
| |
Collapse
|
21
|
Elahi SM, Chand S, Deng W, Pal A, Das MC. Polycarboxylate‐Templated Coordination Polymers: Role of Templates for Superprotonic Conductivities of up to 10
−1
S cm
−1. Angew Chem Int Ed Engl 2018; 57:6662-6666. [DOI: 10.1002/anie.201802632] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Syed Meheboob Elahi
- Department of ChemistryIndian Institute of Technology Kharagpur WB 721302 India
| | - Santanu Chand
- Department of ChemistryIndian Institute of Technology Kharagpur WB 721302 India
| | - Wei‐Hua Deng
- Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Arun Pal
- Department of ChemistryIndian Institute of Technology Kharagpur WB 721302 India
| | - Madhab C. Das
- Department of ChemistryIndian Institute of Technology Kharagpur WB 721302 India
| |
Collapse
|
22
|
Gui D, Dai X, Tao Z, Zheng T, Wang X, Silver MA, Shu J, Chen L, Wang Y, Zhang T, Xie J, Zou L, Xia Y, Zhang J, Zhang J, Zhao L, Diwu J, Zhou R, Chai Z, Wang S. Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity. J Am Chem Soc 2018; 140:6146-6155. [PMID: 29693392 DOI: 10.1021/jacs.8b02598] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although comprehensive progress has been made in the area of coordination polymer (CP)/metal-organic framework (MOF)-based proton-conducting materials over the past decade, searching for a CP/MOF with stable, intrinsic, high anhydrous proton conductivity that can be directly used as a practical electrolyte in an intermediate-temperature proton-exchange membrane fuel cell assembly for durable power generation remains a substantial challenge. Here, we introduce a new proton-conducting CP, (NH4)3[Zr(H2/3PO4)3] (ZrP), which consists of one-dimensional zirconium phosphate anionic chains and fully ordered charge-balancing NH4+ cations. X-ray crystallography, neutron powder diffraction, and variable-temperature solid-state NMR spectroscopy suggest that protons are disordered within an inherent hydrogen-bonded infinite chain of acid-base pairs (N-H···O-P), leading to a stable anhydrous proton conductivity of 1.45 × 10-3 S·cm-1 at 180 °C, one of the highest values among reported intermediate-temperature proton-conducting materials. First-principles and quantum molecular dynamics simulations were used to directly visualize the unique proton transport pathway involving very efficient proton exchange between NH4+ and phosphate pairs, which is distinct from the common guest encapsulation/dehydration/superprotonic transition mechanisms. ZrP as the electrolyte was further assembled into a H2/O2 fuel cell, which showed a record-high electrical power density of 12 mW·cm-2 at 180 °C among reported cells assembled from crystalline solid electrolytes, as well as a direct methanol fuel cell for the first time to demonstrate real applications. These cells were tested for over 15 h without notable power loss.
Collapse
Affiliation(s)
- Daxiang Gui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Xing Dai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Zetian Tao
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province , Yancheng Institute of Technology , Yancheng 224001 , Jiangsu , China
| | - Tao Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Xiangxiang Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Mark A Silver
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Jie Shu
- Analysis and Testing Center , Soochow University , 199 Renai Road , Suzhou 215123 , China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Tiantian Zhang
- Analysis and Testing Center , Soochow University , 199 Renai Road , Suzhou 215123 , China
| | - Jian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Lin Zou
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry , China Academy of Engineering Physics (CAEP) , Mianyang 621999 , China
| | - Yuanhua Xia
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry , China Academy of Engineering Physics (CAEP) , Mianyang 621999 , China
| | - Jujia Zhang
- Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Jin Zhang
- Beijing Key Lab of Bio-inspired Energy Materials and Devices & School of Space and Environment , Beihang University , Beijing 100191 , China
| | - Ling Zhao
- Department of Material Science and Chemistry , China University of Geosciences , Wuhan 430074 , China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Ruhong Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China.,Computational Biology Center , IBM Thomas J Watson Research Center , Yorktown Heights , New York 10598 , United States
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| |
Collapse
|
23
|
Elahi SM, Chand S, Deng W, Pal A, Das MC. Polycarboxylate‐Templated Coordination Polymers: Role of Templates for Superprotonic Conductivities of up to 10
−1
S cm
−1. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802632] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Syed Meheboob Elahi
- Department of ChemistryIndian Institute of Technology Kharagpur WB 721302 India
| | - Santanu Chand
- Department of ChemistryIndian Institute of Technology Kharagpur WB 721302 India
| | - Wei‐Hua Deng
- Fujian Institute of Research on the Structure of MatterChinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Arun Pal
- Department of ChemistryIndian Institute of Technology Kharagpur WB 721302 India
| | - Madhab C. Das
- Department of ChemistryIndian Institute of Technology Kharagpur WB 721302 India
| |
Collapse
|
24
|
Reinsch H, Homburg T, Heidenreich N, Fröhlich D, Hennninger S, Wark M, Stock N. Green Synthesis of a New Al-MOF Based on the Aliphatic Linker Mesaconic Acid: Structure, Properties and In Situ Crystallisation Studies of Al-MIL-68-Mes. Chemistry 2018; 24:2173-2181. [DOI: 10.1002/chem.201704771] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Helge Reinsch
- Institut für Anorganische Chemie der; CAU Kiel; Max-Eyth-Straße 2 24118 Kiel Germany
- MOF Apps AS; c/o Smidig Regnskapsservice ANS, P. Box 24 Tåsen; 0801 Oslo Norway
| | - Thomas Homburg
- Institut für Anorganische Chemie der; CAU Kiel; Max-Eyth-Straße 2 24118 Kiel Germany
| | - Niclas Heidenreich
- Institut für Anorganische Chemie der; CAU Kiel; Max-Eyth-Straße 2 24118 Kiel Germany
| | - Dominik Fröhlich
- Fraunhofer Institute for Solar Energy Systems ISE; Heidenhofstrasse 2 79110 Freiburg Germany
| | - Stefan Hennninger
- Fraunhofer Institute for Solar Energy Systems ISE; Heidenhofstrasse 2 79110 Freiburg Germany
| | - Michael Wark
- Institut für Chemie; Carl von Ossietzky Universität Oldenburg; Carl-von-Ossietzky-Strasse 9-11 26129 Oldenburg Germany
| | - Norbert Stock
- Institut für Anorganische Chemie der; CAU Kiel; Max-Eyth-Straße 2 24118 Kiel Germany
| |
Collapse
|
25
|
Ren J, Ledwaba M, Musyoka NM, Langmi HW, Mathe M, Liao S, Pang W. Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Facile proton conduction via Keggin anion ⋯ H2O H-bonded chain in a Ag+-5-Phenyltetrazole framework by acid-functionalization. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Wang K, Qi X, Wang Z, Wang R, Sun J, Zhang Q. In Situ Encapsulation of Imidazolium Proton Carriers in Anionic Open Frameworks Leads the Way to Proton-Conducting Materials. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kangcai Wang
- Research Center of Energetic Material Genome Science; Institute of Chemical Materials; China Academy of Engineering Physics (CAEP); 621900 Mianyang P. R. China
| | - Xiujuan Qi
- Sichuan Co-Innovation Center for New Energetic Materials; 621900 Mianyang P. R. China
- Southwest University of Science and Technology; 621900 Mianyang P. R. China
| | - Zhi Wang
- Research Center of Energetic Material Genome Science; Institute of Chemical Materials; China Academy of Engineering Physics (CAEP); 621900 Mianyang P. R. China
| | - Ruihao Wang
- Sichuan Co-Innovation Center for New Energetic Materials; 621900 Mianyang P. R. China
- Southwest University of Science and Technology; 621900 Mianyang P. R. China
| | - Jie Sun
- Research Center of Energetic Material Genome Science; Institute of Chemical Materials; China Academy of Engineering Physics (CAEP); 621900 Mianyang P. R. China
| | - Qinghua Zhang
- Research Center of Energetic Material Genome Science; Institute of Chemical Materials; China Academy of Engineering Physics (CAEP); 621900 Mianyang P. R. China
| |
Collapse
|
28
|
Zhang FM, Dong LZ, Qin JS, Guan W, Liu J, Li SL, Lu M, Lan YQ, Su ZM, Zhou HC. Effect of Imidazole Arrangements on Proton-Conductivity in Metal–Organic Frameworks. J Am Chem Soc 2017; 139:6183-6189. [DOI: 10.1021/jacs.7b01559] [Citation(s) in RCA: 345] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Feng-Ming Zhang
- Jiangsu
Collaborative Innovation Centre of Biomedical Functional Materials,
Jiangsu Key Laboratory of New Power Batteries, School of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- College
of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Long-Zhang Dong
- Jiangsu
Collaborative Innovation Centre of Biomedical Functional Materials,
Jiangsu Key Laboratory of New Power Batteries, School of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun-Sheng Qin
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Wei Guan
- Department
of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Jiang Liu
- Jiangsu
Collaborative Innovation Centre of Biomedical Functional Materials,
Jiangsu Key Laboratory of New Power Batteries, School of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shun-Li Li
- Jiangsu
Collaborative Innovation Centre of Biomedical Functional Materials,
Jiangsu Key Laboratory of New Power Batteries, School of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Meng Lu
- Jiangsu
Collaborative Innovation Centre of Biomedical Functional Materials,
Jiangsu Key Laboratory of New Power Batteries, School of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu
Collaborative Innovation Centre of Biomedical Functional Materials,
Jiangsu Key Laboratory of New Power Batteries, School of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhong-Min Su
- Department
of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
29
|
Académie des Sciences Prizes/Novartis Chemistry Lectureship 2016–2017/Welch Award in Chemistry. Angew Chem Int Ed Engl 2017; 56:1447-1448. [DOI: 10.1002/anie.201611822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Preise der Académie des Sciences/Novartis Chemistry Lectureship 2016-2017/Welch-Preis in Chemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|