1
|
Knoll K, Herold D, Hirschmann M, Thiele CM. A supramolecular and liquid crystalline water-based alignment medium based on azobenzene-substituted 1,3,5-benzenetricarboxamides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:563-571. [PMID: 35266585 DOI: 10.1002/mrc.5266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
A supramolecular, lyotropic liquid crystalline alignment medium based on an azobenzene-containing 1,3,5-benzenetricarboxamide (BTA) building block is described and investigated. As we demonstrate, this water-based system is suitable for the investigation of various water-soluble analytes and allows for a scaling of alignment strength through variation of temperature. Additionally, alignment is shown to reversibly collapse above a certain temperature, yielding an isotropic solution. This collapse allows for isotropic reference measurements, which are typically needed in addition to those in an anisotropic environment, to be performed using the same sample just by varying the temperature. The medium described thus provides easy access to anisotropic NMR observables and simplifies structure elucidation techniques based thereon.
Collapse
Affiliation(s)
- Kevin Knoll
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dominik Herold
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Max Hirschmann
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
da Silva DGB, Hallwass F, Navarro-Vázquez A. Single experiment measurement of residual dipolar couplings in aqueous solution using a biphasic bisperylene imide chromonic liquid crystal. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:408-413. [PMID: 33295034 DOI: 10.1002/mrc.5120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
The use of the biphasic isotropic/nematic region in a bisperylene imide-based lyotropic liquid crystal system allows the extraction of proton-carbon 1 DCH residual dipolar couplings in aqueous solution from a single F1-coupled HSQC experiment. The method was successfully applied to the RDC-based conformational analysis of sucrose.
Collapse
Affiliation(s)
- Danilo G B da Silva
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Hallwass
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
3
|
Sager E, Tzvetkova P, Gossert AD, Piechon P, Luy B. Determination of Configuration and Conformation of a Reserpine Derivative with Seven Stereogenic Centers Using Molecular Dynamics with RDC-Derived Tensorial Constraints*. Chemistry 2020; 26:14435-14444. [PMID: 32744785 PMCID: PMC7702126 DOI: 10.1002/chem.202002642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Indexed: 11/11/2022]
Abstract
NMR-based determination of the configuration of complex molecules containing many stereocenters is often not possible using traditional NOE data and coupling patterns. Making use of residual dipolar couplings (RDCs), we were able to determine the relative configuration of a natural product containing seven stereocenters, including a chiral amine lacking direct RDC data. To identify the correct relative configuration out of 32 possible ones, experimental RDCs were used in three different approaches for data interpretation: by fitting experimental data based singular value decomposition (SVD) using a single alignment tensor and either (i) a single conformer or (ii) multiple conformers, or alternatively (iii) using molecular dynamics simulations with tensorial orientational constraints (MDOC). Even though in all three approaches one and the same configuration could be selected and clear discrimination between possible configurations was achieved, the experimental data was not fully satisfied by the methods based on single tensor approaches. While these two approaches are faster, only MDOC is able to fully reproduce experimental results, as the obtained conformational ensemble adequately covers the conformational space necessary to describe the molecule with inherent flexibility.
Collapse
Affiliation(s)
- Emine Sager
- Institut für Organische ChemieKarlsruher Institut für Technologie (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
| | - Pavleta Tzvetkova
- Institut für Biologische Grenzflächen 4—Magnetische ResonanzKarlsruher Institut für Technologie (KIT)Postfach 364076021KarlsruheGermany
| | - Alvar D. Gossert
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
- Institut für Molekularbiologie und BiophysikETH Zürich8093ZürichSwitzerland
| | - Philippe Piechon
- Novartis Pharma AGNovartis Institutes for Biomedical Research4002BaselSwitzerland
| | - Burkhard Luy
- Institut für Organische ChemieKarlsruher Institut für Technologie (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
- Institut für Biologische Grenzflächen 4—Magnetische ResonanzKarlsruher Institut für Technologie (KIT)Postfach 364076021KarlsruheGermany
| |
Collapse
|
4
|
Qin S, Jiang Y, Sun H, Liu H, Zhang A, Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid‐Crystalline‐Based Medium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si‐Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Section of Structural Biology Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Han Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ai‐Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
5
|
Qin S, Jiang Y, Sun H, Liu H, Zhang A, Lei X. Measurement of Residual Dipolar Couplings of Organic Molecules in Multiple Solvent Systems Using a Liquid‐Crystalline‐Based Medium. Angew Chem Int Ed Engl 2020; 59:17097-17103. [DOI: 10.1002/anie.202007243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Si‐Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Yan Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Han Sun
- Section of Structural Biology Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) 13125 Berlin Germany
| | - Han Liu
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| | - Ai‐Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
| | - Xinxiang Lei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South-Central University for Nationalities Wuhan 430074 China
- School of Pharmaceutical Sciences South-Central University for Nationalities Wuhan 430074 China
| |
Collapse
|
6
|
Liu H, Chen P, Li XL, Sun H, Lei X. Practical aspects of oligopeptide AAKLVFF as an alignment medium for the measurements of residual dipolar coupling of organic molecules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:404-410. [PMID: 32239576 DOI: 10.1002/mrc.4825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/26/2018] [Indexed: 06/11/2023]
Abstract
Practical aspects of the oligopeptide AAKLVFF as an alignment medium are discussed, including large-scale synthesis of the oligopeptide, detailed description of preparation of the alignment medium, and acquisition of the RDCs. The resulting orienting medium is stable and highly homogeneous with tunable alignment strength in methanol.
Collapse
Affiliation(s)
- Han Liu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Pian Chen
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| | - Xiao-Lu Li
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Han Sun
- Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, China
| |
Collapse
|
7
|
Ma ZK, Han XY, Liu H, Ji JC, Qin SY, Li XD, Lei X. Lyotropic liquid crystal to measure residual dipolar couplings in dimethyl sulfoxide based on modified cellulose nanocrystals. NEW J CHEM 2020. [DOI: 10.1039/c9nj06031f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel lyotropic liquid crystal was developed for the measurement of RDCs of organic molecules with no background signals.
Collapse
Affiliation(s)
- Zong-Kai Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Xiao-Yang Han
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Han Liu
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Jia-Cheng Ji
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Xiang-Dan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- P. R. China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| |
Collapse
|
8
|
Immel S, Köck M, Reggelin M. Configurational Analysis by Residual Dipolar Coupling Driven Floating Chirality Distance Geometry Calculations. Chemistry 2018; 24:13918-13930. [PMID: 29999551 DOI: 10.1002/chem.201802800] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Indexed: 11/06/2022]
Abstract
A new method implemented into a computer program (ConArch+ ) has been developed and applied to demonstrate the successful implementation of residual dipolar couplings (RDCs) in distance geometry (DG) calculations for the configurational assignment of chiral compounds. Unlike established protocols, the new approach combines floating chirality (fc) in 4D- and 3D-distance bounds driven dynamics (DDD) calculations with structural information from RDCs. Thus, relative configurations of chiral compounds were generated only by observables (e.g., NOEs, RDCs) rendering tedious evaluations of calculated structures against RDCs obsolete. We demonstrate the potential of this novel procedure by the simultaneous determination of the configuration and the conformation of three natural products, (-)-isopinocampheol (1), tubocurarine (2), and vincristine (3), as well as for diisopropylidene-β-d-fructopyranose (4).
Collapse
Affiliation(s)
- Stefan Immel
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Matthias Köck
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany.,Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS), Abteilung Mikrobielle Naturstoffe, Universität des Saarlandes, Universitätscampus E8.1, 66123, Saarbrücken, Germany
| | - Michael Reggelin
- Technische Universität Darmstadt, Clemens Schöpf Institut für Organische Chemie und Biochemie, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| |
Collapse
|
9
|
Lei X, Qiu F, Sun H, Bai L, Wang WX, Xiang W, Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew Chem Int Ed Engl 2017; 56:12857-12861. [PMID: 28834640 DOI: 10.1002/anie.201705123] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/11/2017] [Indexed: 11/10/2022]
Abstract
Residual dipolar coupling (RDC) is a powerful structural parameter for the determination of the constitution, conformation, and configuration of organic molecules. Herein, we report the first liquid crystal-based orienting medium that is compatible with MeOH, thus enabling RDC acquisitions of a wide range of intermediate to polar organic molecules. The liquid crystals were produced from self-assembled oligopeptide nanotubes (AAKLVFF), which are stable at very low concentrations. The presented alignment medium is highly homogeneous, and the size of RDCs can be scaled with the concentration of the peptide. To assess the accuracy of the RDC measurement by employing this new medium, seven bioactive natural products from different classes were chosen and analyzed. The straightforward preparation of the anisotropic alignment sample will offer a versatile and robust protocol for the routine RDC measurement of natural products.
Collapse
Affiliation(s)
- Xinxiang Lei
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Feng Qiu
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Liwen Bai
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences, South Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, China
| | - Hongping Xiao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| |
Collapse
|
10
|
Lei X, Qiu F, Sun H, Bai L, Wang WX, Xiang W, Xiao H. A Self-Assembled Oligopeptide as a Versatile NMR Alignment Medium for the Measurement of Residual Dipolar Couplings in Methanol. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxiang Lei
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Feng Qiu
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Liwen Bai
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Wen-Xuan Wang
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
| | - Wensheng Xiang
- School of Life Science; Northeast Agricultural University; Harbin Heilongjiang Province 150030 China
| | - Hongping Xiao
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| |
Collapse
|
11
|
Li GW, Cao JM, Zong W, Hu L, Hu ML, Lei X, Sun H, Tan RX. Helical Polyisocyanopeptides as Lyotropic Liquid Crystals for Measuring Residual Dipolar Couplings. Chemistry 2017; 23:7653-7656. [DOI: 10.1002/chem.201700539] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Gao-Wei Li
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P. R. China
| | - Jiang-Ming Cao
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P. R. China
| | - Wen Zong
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Li Hu
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Mao-Lin Hu
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences; South Central University for Nationalities; Wuhan 430074 P. R. China
- College of Chemistry & Materials Engineering; Wenzhou University; Wenzhou 325035 P. R. China
| | - Han Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 Berlin Germany
| | - Ren Xiang Tan
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing 210093 P. R. China
| |
Collapse
|
12
|
Liu Y, Xu Z, Gao W, Cheng Z, Gao C. Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606794. [PMID: 28233348 DOI: 10.1002/adma.201606794] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Two-dimensional colloidal nanomaterials are running into renaissance after the enlightening researches of graphene. Macroscopic one-dimensional fiber is an optimal ordered structural form to express the in-plane merits of 2D nanomaterials, and the formation of liquid crystals (LCs) allows the creation of continuous fibers. In the correlated system from LCs to fibers, understanding their macroscopic organizing behavior and transforming them into new solid fibers is greatly significant for applications. Herein, we retrospect the history of 2D colloids and discuss about the concept of 2D nanomaterial fibers in the context of LCs, elaborating the motivation, principle and possible strategies of fabrication. Then we highlight the creation, development and typical applications of graphene fibers. Additionally, the latest advances of other 2D nanomaterial fibers are also summarized. Finally, conclusions, challenges and perspectives are provided to show great expectations of better and more fibrous materials of 2D nanomaterials. This review gives a comprehensive retrospect of the past century-long effort about the whole development of 2D colloids, and plots a clear roadmap - "lamellar solid - LCs - macroscopic fibers - flexible devices", which will certainly open a new era of structural-multifunctional application for the conventional 2D colloids.
Collapse
Affiliation(s)
- Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| | - Zhengdong Cheng
- Arti McFerrin Department of Chemical Engineering and Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
| |
Collapse
|
13
|
Al‐Massaedh “AA, Schmidt M, Pyell U, Reinscheid UM. Elucidation of the Enantiodiscrimination Properties of a Nonracemic Chiral Alignment Medium through Gel-based Capillary Electrochromatography: Separation of the Mefloquine Stereoisomers. ChemistryOpen 2016; 5:455-459. [PMID: 27777838 PMCID: PMC5062011 DOI: 10.1002/open.201600085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 11/07/2022] Open
Abstract
Enantiodiscrimination and enantioseparation are two highly important processes in chemistry, often performed by using NMR spectroscopy and chromatography. For a better understanding of the mechanistic details, the same system should be studied by both methods. In addition, isotropic and anisotropic NMR parameters should be obtained, the latter using alignment media so that residual dipolar couplings and chemical-shift anisotropies can be measured. Consequently, a chiral alignment medium was used for the first time in chiral gel-based capillary electrochromatography with the four stereoisomers of the antimalaria drug mefloquine as test compounds. Chromatographic data verify that enantiodiscrimination obtained with this alignment gel is caused by differences in the equilibrium constants related to associate formation. Hence, the chromatographic separation provides physicochemical data that form a basis for the understanding and optimization of alignment processes, and vice versa.
Collapse
Affiliation(s)
- “Ayat Allah” Al‐Massaedh
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straße35032MarburgGermany
- Department of ChemistryFaculty of ScienceAl al-Bayt University25113MafraqJordan
| | - Manuel Schmidt
- Department of NMR-based Structural BiologyMax-Planck-Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Ute Pyell
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straße35032MarburgGermany
| | - Uwe M. Reinscheid
- Department of NMR-based Structural BiologyMax-Planck-Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| |
Collapse
|