1
|
Marchesi S, Econdi S, Paul G, Carniato F, Marchese L, Guidotti M, Bisio C. Nb(V)-containing saponite: A versatile clay for the catalytic degradation of the hazardous organophosphorus pesticide paraoxon under very mild conditions. Heliyon 2024; 10:e39898. [PMID: 39553565 PMCID: PMC11564950 DOI: 10.1016/j.heliyon.2024.e39898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
A synthetic saponite clay containing structural Nb(V) metal centres (NbSAP) was investigated in the abatement of paraoxon-ethyl, an anti-cholinergic organophosphorus pesticide, under mild conditions (neutral pH, room temperature and ambient pressure) in heterogenous phase, without additional basic additives. The material was selected according to its high surface acidity and ease of preparation through a one-step hydrothermal synthesis. The presence of Nb(V) ions played a crucial role in efficiently catalysing the degradation of aggressive chemical substrates. A niobium(V) oxide with very low surface acidity was also tested as a reference material. The study employed a multi-technique approach to monitor the pesticide degradation pathway and by-products formed during abatement experiments in polar non-protic and aqueous solvents. Notably, in water, the concentration of paraoxon-ethyl significantly decreased by 82 % within the first hour of contact with the clay. Additionally, NbSAP demonstrated a good performance after three repeated catalytic cycles and subsequent reactivation.
Collapse
Affiliation(s)
- Stefano Marchesi
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Stefano Econdi
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133, Milano, Italy
| | - Geo Paul
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
| | - Matteo Guidotti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, AL, Italy
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133, Milano, MI, Italy
| |
Collapse
|
2
|
Ivanova EV, Vasudevan A, Senyurt EI, Schoenitz M, Khalizov AF, Dreizin EL, Gor GY. Surface Tension of Organophosphorus Compounds: Sarin and its Surrogates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5569-5578. [PMID: 37014998 DOI: 10.1021/acs.langmuir.3c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
While the production and stockpiling of organophosphorus chemical warfare agents (CWAs), such as sarin, was banned three decades ago, CWAs have remained a threat. New approaches for decontamination and destruction of CWAs require detailed knowledge of their various physicochemical properties. In particular, surface tension is needed to describe the formation and evolution of hazardous aerosols when CWA liquids are dispersed in the air. Due to the extreme toxicity of sarin, most experimental studies are carried out using its surrogates─organophosphorus compounds which, while having similar structures, are much less toxic, e.g., dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP). However, not only for sarin, but also for its surrogates, literature data on the surface tension are scarce. Here we present experimental measurements and computational predictions of the surface tension of DMMP and DIMP. Classical molecular dynamics simulations using the Transferable Potentials for Phase Equilibria (TraPPE) force field produced an excellent agreement with the experimental results in the temperature range from 3 to 60 °C, validating the predictive capability of TraPPE. Consequently, we applied the TraPPE force field to sarin. Our modeled values for the sarin surface tension cover the range of temperatures from 0 to 85 °C, and the four experimental data points from the literature measured between 20 and 35 °C agree perfectly with our predictions. The temperature-dependent surface tension values for sarin and its surrogates obtained in our study can be used in models predicting the formation and evolution of aerosols made of these chemicals. Furthermore, our results justify the use of the TraPPE force field to derive the thermodynamic properties of other organophosphorus compounds with structures similar to the ones studied here.
Collapse
Affiliation(s)
- Ella V Ivanova
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Ashvinkumar Vasudevan
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Elif Irem Senyurt
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Mirko Schoenitz
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Alexei F Khalizov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
- Department of Chemistry and Environmental Science New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Edward L Dreizin
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Gennady Y Gor
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| |
Collapse
|
3
|
Zhu L, Tao R, Peng W, Huo A, Guo W. Polyoxometalates immobilized on MIL-100 (Fe) as an emerging platform for eliminating breast cancer tumor cells. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
4
|
Müscher‐Polzin P, Poschmann M, Näther C, Bensch W. Room Temperature Synthesis of [Pd(cyclam)]
5
{H
3
Nb
6
O
19
}
2
⋅ 26H
2
O: a Suitable Precursor for the
in‐situ
Generation of a Highly Active Catalyst for Light‐Driven Hydrogen Evolution. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Philipp Müscher‐Polzin
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Michael Poschmann
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Str. 2 24118 Kiel Germany
- Max Planck Institute for Chemical Energy Conversion Department of Heterogeneous Reactions Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Christian Näther
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Wolfgang Bensch
- Institute of Inorganic Chemistry Christian-Albrechts-University of Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| |
Collapse
|
5
|
Wu Y, Zhong Z, Wu P, Sun Y, Li X, Zheng S. A Peanut‐Like Sb‐Embedded Polyoxoniobate Cage for Hydrolytic Decomposition of Chemical Warfare Agent. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan‐Lan Wu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Zhuo‐Hao Zhong
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Ping‐Xin Wu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Yan‐Qiong Sun
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Xin‐Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Shou‐Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
6
|
Zhang D, Zhang W, Lin Z, Dong J, Zhen N, Chi Y, Hu C. Mono- and Di-Sc-Substituted Keggin Polyoxometalates: Effective Lewis Acid Catalysts for Nerve Agent Simulant Hydrolysis and Mechanistic Insights. Inorg Chem 2020; 59:9756-9764. [PMID: 32628500 DOI: 10.1021/acs.inorgchem.0c00976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, the hydrolysis of nerve agents by Lewis acid catalysts has attracted considerable attention. The development of molecular catalysts, such as polyoxometalates (POMs) with Lewis acidic sites, is helpful to improve degradation efficiency and understand the catalytic mechanism at a molecular level. Herein, two novel Keggin-type POMs, namely, mono-Sc-substituted K4[Sc(H2O)PW11O39]·22H2O·2(CH3COOK) (1) and di-Sc-substituted Na7[Sc2(CH3COO)2PW10O38]·10H2O·2CH3COONa (2), have been successfully synthesized and thoroughly characterized by routine techniques. To our knowledge, 1 and 2 represent the first example of discrete Sc-substituted Keggin clusters. Compared with the reported Sc-containing POMs, 1 and 2 exhibit relatively good solubility and stability in aqueous solution, as evidenced by 31P nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. The two Sc-substituted POMs can effectively catalyze the hydrolytic decontamination of dimethyl 4-nitrophenyl phosphate (DMNP), a nerve agent simulant, at near-neutral pH. Notably, the catalytic performance of 2 (conversion: 97%) is much better than that of 1 (conversion: 28%). It is found that the different coordination environment of Sc is the key factor to impact their activity. Mechanistic studies including the control experiments and spectroscopy analysis (13C nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry) show that under the turnover conditions the coordinated acetate dissociates from 2 and the exposed coordinatively unsaturated Sc center is more active than the water-coordinated Sc in 1 for binding with DMNP.
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wenqi Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhengguo Lin
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Dong
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ni Zhen
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Sun J, Qin D, Yang G. A New Hexa‐Ti
IV
‐Substituted Sandwich‐Type Polyoxotungstate: Hydrothermal Synthesis, Structure, and Oxidative Decontamination of Chemical Warfare Agent Simulant. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yue‐Lin Wang
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology 100081 Beijing China
- College of Science School of Chemistry and Chemical Engineering Inner Mongolia Agricultural University 010018 Hohhot China
| | - Jun‐Jun Sun
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology 100081 Beijing China
| | - Dan Qin
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology 100081 Beijing China
| | - Guo‐Yu Yang
- MOE Key Laboratory of Cluster Science School of Chemistry and Chemical Engineering Beijing Institute of Technology 100081 Beijing China
| |
Collapse
|
8
|
Zhu Z, Lin Y, Yu H, Li X, Zheng S. Inorganic–Organic Hybrid Polyoxoniobates: Polyoxoniobate Metal Complex Cage and Cage Framework. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zeng‐Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| | - Ya‐Yun Lin
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| | - Hao Yu
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| | - Xin‐Xiong Li
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| | - Shou‐Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
9
|
Zhu ZK, Lin YY, Yu H, Li XX, Zheng ST. Inorganic-Organic Hybrid Polyoxoniobates: Polyoxoniobate Metal Complex Cage and Cage Framework. Angew Chem Int Ed Engl 2019; 58:16864-16868. [PMID: 31613421 DOI: 10.1002/anie.201910477] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 11/07/2022]
Abstract
The combination of polyoxoniobates (PONbs) with 3d metal ions, azoles, and organoamines is a general synthetic procedure for making unprecedented PONb metal complex cage materials, including discrete molecular cages and extended cage frameworks. By this method, the first two PONb metal complex cages K4 @{[Cu29 (OH)7 (H2 O)2 (en)8 (trz)21 ][Nb24 O67 (OH)2 (H2 O)3 ]4 } and [Cu(en)2 ]@{[Cu2 (en)2 (trz)2 ]6 (Nb68 O188 )} have been made. The former exhibits a huge tetrahedral cage with more than 120 metal centers, which is the largest inorganic-organic hybrid PONb known to date. The later shows a large cubic cage, which can act as building blocks for cage-based extended assembly to form a 3D cage framework {[Cu(en)2 ]@{[Cu2 (trz)2 (en)2 ]6 [H10 Nb68 O188 ]}}. These materials exhibit visible-light-driven photocatalytic H2 evolution activity and high vapor adsorption capacity. The results hold promise for developing both novel cage materials and largely unexplored inorganic-organic hybrid PONb chemistry.
Collapse
Affiliation(s)
- Zeng-Kui Zhu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Ya-Yun Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Hao Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
10
|
Dong J, Lv H, Sun X, Wang Y, Ni Y, Zou B, Zhang N, Yin A, Chi Y, Hu C. A Versatile Self‐Detoxifying Material Based on Immobilized Polyoxoniobate for Decontamination of Chemical Warfare Agent Simulants. Chemistry 2018; 24:19208-19215. [DOI: 10.1002/chem.201804523] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/20/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jing Dong
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongjin Lv
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Xiangrong Sun
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yin Wang
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yuanman Ni
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bo Zou
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Nan Zhang
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Anxiang Yin
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of EducationBeijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion MaterialsSchool of Chemistry and Chemical EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
11
|
{Nb
288
O
768
(OH)
48
(CO
3
)
12
}: A Macromolecular Polyoxometalate with Close to 300 Niobium Atoms. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Wu Y, Li X, Qi Y, Yu H, Jin L, Zheng S. {Nb
288
O
768
(OH)
48
(CO
3
)
12
}: A Macromolecular Polyoxometalate with Close to 300 Niobium Atoms. Angew Chem Int Ed Engl 2018; 57:8572-8576. [DOI: 10.1002/anie.201804088] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yan‐Lan Wu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Xin‐Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Yan‐Jie Qi
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Hao Yu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Lu Jin
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| | - Shou‐Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou Fujian 350108 China
| |
Collapse
|
13
|
A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Dong J, Hu J, Chi Y, Lin Z, Zou B, Yang S, Hill CL, Hu C. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants. Angew Chem Int Ed Engl 2017; 56:4473-4477. [PMID: 28322483 DOI: 10.1002/anie.201700159] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 11/07/2022]
Abstract
A novel double-anion complex, H13 [(CH3 )4 N]12 [PNb12 O40 (VV O)2 ⋅(VIV4 O12 )2 ]⋅22 H2 O (1), based on bicapped polyoxoniobate and tetranuclear polyoxovanadate was synthesized, characterized by routine techniques and used in the catalytic decontamination of chemical warfare agents. Under mild conditions, 1 catalyzes both hydrolysis of the nerve agent simulant, diethyl cyanophosphonate (DECP) and selective oxidation of the sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). In the oxidative decontamination system 100 % CEES was transformed selectively to nontoxic 2-chloroethyl ethyl sulfoxide and vinyl ethyl sulfoxide using nearly stoichiometric 3 % aqueous H2 O2 with a turnover frequency (TOF) of 16 000 h-1 . Importantly, the catalytic activity is maintained even after ten recycles and CEES is completely decontaminated in 3 mins without formation of the highly toxic sulfone by-product. A three-step oxidative mechanism is proposed.
Collapse
Affiliation(s)
- Jing Dong
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jufang Hu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Yingnan Chi
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Zhengguo Lin
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Bo Zou
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Song Yang
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Craig L Hill
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Changwen Hu
- Department of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
15
|
Fan L, Jia J, Hou H, Lefebvre Q, Rueping M. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling. Chemistry 2016; 22:16437-16440. [PMID: 27661773 DOI: 10.1002/chem.201604452] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/16/2022]
Abstract
A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C-O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.
Collapse
Affiliation(s)
- Lulu Fan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jiaqi Jia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Hong Hou
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Quentin Lefebvre
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany. , .,King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955-6900, Saudi Arabia. ,
| |
Collapse
|