1
|
Zhang Z, Wang H, Su M, Sun Y, Tan S, Ponkratova E, Zhao M, Wu D, Wang K, Pan Q, Chen B, Zuev D, Song Y. Printed Nanochain‐Based Colorimetric Assay for Quantitative Virus Detection. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Meng Su
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Yali Sun
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Shuang‐Jie Tan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ekaterina Ponkratova
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics Fudan University Shanghai 200433 P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center General Hospital of the People's Liberation Army of China Beijing 100853 P. R. China
| | - Keyu Wang
- Department of Clinical Laboratory The second medical center of Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| | - Dmitry Zuev
- School of Physics and Engineering ITMO University Saint Petersburg 197101 Russia
| | - Yanlin Song
- Key Laboratory of Green Printing CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences (UCAS) P. R. China
| |
Collapse
|
2
|
Zhang Z, Wang H, Su M, Sun Y, Tan SJ, Ponkratova E, Zhao M, Wu D, Wang K, Pan Q, Chen B, Zuev D, Song Y. Printed Nanochain-Based Colorimetric Assay for Quantitative Virus Detection. Angew Chem Int Ed Engl 2021; 60:24234-24240. [PMID: 34494351 DOI: 10.1002/anie.202109985] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Fast and ultrasensitive detection of pathogens is very important for efficient monitoring and prevention of viral infections. Here, we demonstrate a label-free optical detection approach that uses a printed nanochain assay for colorimetric quantitative testing of viruses. The antibody-modified nanochains have high activity and specificity which can rapidly identify target viruses directly from biofluids in 15 min, as well as differentiate their subtypes. Arising from the resonance induced near-field enhancement, the color of nanochains changes with the binding of viruses that are easily observed by a smartphone. We achieve the detection limit of 1 PFU μL-1 through optimizing the optical response of nanochains in visible region. Besides, it allows for real-time response to virus concentrations ranging from 0 to 1.0×105 PFU mL-1 . This low-cost and portable platform is also applicable to rapid detection of other biomarkers, making it attractive for many clinical applications.
Collapse
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Yali Sun
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Shuang-Jie Tan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ekaterina Ponkratova
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Maoxiong Zhao
- State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education) and Department of Physics, Fudan University, Shanghai, 200433, P. R. China
| | - Dongdong Wu
- Department of Neurosurgery, First Medical Center, General Hospital of the People's Liberation Army of China, Beijing, 100853, P. R. China
| | - Keyu Wang
- Department of Clinical Laboratory, The second medical center of Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| | - Dmitry Zuev
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences (UCAS), P. R. China
| |
Collapse
|
3
|
Niu Q, Ma L, Zhu S, Li L, Zheng Q, Hou J, Lian H, Wu L, Yan X. Quantitative Assessment of the Physical Virus Titer and Purity by Ultrasensitive Flow Virometry. Angew Chem Int Ed Engl 2021; 60:9351-9356. [PMID: 33590592 PMCID: PMC8014667 DOI: 10.1002/anie.202100872] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/28/2022]
Abstract
Rapid quantification of viruses is vital for basic research on viral diseases as well as biomedical application of virus-based products. Here, we report the development of a high-throughput single-particle method to enumerate intact viral particles by ultrasensitive flow virometry, which detects single viruses as small as 27 nm in diameter. The nucleic acid dye SYTO 82 was used to stain the viral (or vector) genome, and a laboratory-built nano-flow cytometer (nFCM) was employed to simultaneously detect the side-scatter and fluorescence signals of individual viral particles. Using the bacteriophage T7 as a model system, intact virions were completely discriminated from empty capsids and naked viral genomes. Successful measurement of the physical virus titer and purity was demonstrated for recombinant adenoviruses, which could be used for gene delivery, therapeutic products derived from phage cocktails, and infected cell supernatants for veterinary vaccine production.
Collapse
Affiliation(s)
- Qian Niu
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Ling Ma
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Shaobin Zhu
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Lan Li
- National Research Center of Engineering and Technology for Veterinary BiologicalsJiangsu Academy of Agricultural SciencesNanjing210014P. R. China
| | - Qisheng Zheng
- National Research Center of Engineering and Technology for Veterinary BiologicalsJiangsu Academy of Agricultural SciencesNanjing210014P. R. China
| | - Jibo Hou
- National Research Center of Engineering and Technology for Veterinary BiologicalsJiangsu Academy of Agricultural SciencesNanjing210014P. R. China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou225009P. R. China
| | - Hong Lian
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Lina Wu
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Xiaomei Yan
- Department of Chemical BiologyMOE Key Laboratory of Spectrochemical Analysis & InstrumentationKey Laboratory for Chemical Biology of Fujian ProvinceCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| |
Collapse
|
4
|
Niu Q, Ma L, Zhu S, Li L, Zheng Q, Hou J, Lian H, Wu L, Yan X. Quantitative Assessment of the Physical Virus Titer and Purity by Ultrasensitive Flow Virometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qian Niu
- Department of Chemical Biology MOE Key Laboratory of Spectrochemical Analysis & Instrumentation Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Ling Ma
- Department of Chemical Biology MOE Key Laboratory of Spectrochemical Analysis & Instrumentation Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Shaobin Zhu
- Department of Chemical Biology MOE Key Laboratory of Spectrochemical Analysis & Instrumentation Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Lan Li
- National Research Center of Engineering and Technology for Veterinary Biologicals Jiangsu Academy of Agricultural Sciences Nanjing 210014 P. R. China
| | - Qisheng Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals Jiangsu Academy of Agricultural Sciences Nanjing 210014 P. R. China
| | - Jibo Hou
- National Research Center of Engineering and Technology for Veterinary Biologicals Jiangsu Academy of Agricultural Sciences Nanjing 210014 P. R. China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses Yangzhou 225009 P. R. China
| | - Hong Lian
- Department of Chemical Biology MOE Key Laboratory of Spectrochemical Analysis & Instrumentation Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Lina Wu
- Department of Chemical Biology MOE Key Laboratory of Spectrochemical Analysis & Instrumentation Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Xiaomei Yan
- Department of Chemical Biology MOE Key Laboratory of Spectrochemical Analysis & Instrumentation Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
5
|
Gong L, Ding W, Chen Y, Yu K, Guo C, Zhou B. Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW
8
O
30
} Determined by Single‐Cell Proteomics Analysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lige Gong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| | - Wenqiao Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Ying Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Kai Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
| | - Baibin Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province College of Life Science and Technology Harbin Normal University Harbin 150025 China
- Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
6
|
Gong L, Ding W, Chen Y, Yu K, Guo C, Zhou B. Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW 8 O 30 } Determined by Single-Cell Proteomics Analysis. Angew Chem Int Ed Engl 2021; 60:8344-8351. [PMID: 33491871 DOI: 10.1002/anie.202100297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/21/2022]
Abstract
The 10-nuclear heteroatom cluster modified {SbW8 O30 } was successfully synthesized and exhibited inhibitory activity (IC50 =0.29 μM). Based on proteomics analysis, Na4 Ni2 Sb2 W2 -SbW8 inhibited ATP production by affecting the expression of 16 related proteins, hindering metabolic functions in vivo and cell proliferation due to reactive oxygen species (ROS) stress. In particular, the low expression of FAD/FMN-binding redox enzymes (relative expression ratio of the experimental group to the control=0.43843) could be attributed to the redox mechanism of Na4 Ni2 Sb2 W2 -SbW8 , which was consistent with the effect of polyoxometalates (POMs) and FMN-binding proteins on ATP formation. An electrochemical study showed that Na4 Ni2 Sb2 W2 -SbW8 combined with FMN to form Na4 Ni2 Sb2 W2 -SbW8 -2FMN complex through a one-electron process of the W atoms. Na4 Ni2 Sb2 W2 -SbW8 acted as catalase and glutathione peroxidase to protect the cell from ROS stress, and the inhibition rates were 63.3 % at 1.77 μM of NADPH and 86.06 % at 10.62 μM of 2-hydroxyterephthalic acid. Overall, our results showed that POMs can be specific oxidative/antioxidant regulatory agents.
Collapse
Affiliation(s)
- Lige Gong
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| | - Wenqiao Ding
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Kai Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Baibin Zhou
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China
| |
Collapse
|
7
|
Jayasundara D, Herath D, Senanayake D, Saeed I, Yang CY, Sun Y, Chang BC, Tang SL, Halgamuge SK. ENVirT: inference of ecological characteristics of viruses from metagenomic data. BMC Bioinformatics 2019; 19:377. [PMID: 30717665 PMCID: PMC7394321 DOI: 10.1186/s12859-018-2398-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022] Open
Abstract
Background Estimating the parameters that describe the ecology of viruses,particularly those that are novel, can be made possible using metagenomic approaches. However, the best-performing existing methods require databases to first estimate an average genome length of a viral community before being able to estimate other parameters, such as viral richness. Although this approach has been widely used, it can adversely skew results since the majority of viruses are yet to be catalogued in databases. Results In this paper, we present ENVirT, a method for estimating the richness of novel viral mixtures, and for the first time we also show that it is possible to simultaneously estimate the average genome length without a priori information. This is shown to be a significant improvement over database-dependent methods, since we can now robustly analyze samples that may include novel viral types under-represented in current databases. We demonstrate that the viral richness estimates produced by ENVirT are several orders of magnitude higher in accuracy than the estimates produced by existing methods named PHACCS and CatchAll when benchmarked against simulated data. We repeated the analysis of 20 metavirome samples using ENVirT, which produced results in close agreement with complementary in virto analyses. Conclusions These insights were previously not captured by existing computational methods. As such, ENVirT is shown to be an essential tool for enhancing our understanding of novel viral populations. Electronic supplementary material The online version of this article (10.1186/s12859-018-2398-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duleepa Jayasundara
- School of Public Health and Community Medicine, University of New South Wales, Randwick, NSW 2052, Australia.
| | - Damayanthi Herath
- Optimisation and Pattern Recognition Research Group, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.,Department of Computer Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - Damith Senanayake
- Optimisation and Pattern Recognition Research Group, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Isaam Saeed
- Optimisation and Pattern Recognition Research Group, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Cheng-Yu Yang
- Biodiversity Research Center, Academia Sinica, Nan-Kang, Taipei 11529, Taiwan
| | - Yuan Sun
- Optimisation and Pattern Recognition Research Group, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Bill C Chang
- Yourgene Bioscience, No. 376-5, Fuxing Rd., Shu-Lin District, New Taipei City, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Nan-Kang, Taipei 11529, Taiwan.
| | - Saman K Halgamuge
- Optimisation and Pattern Recognition Research Group, Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.,Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Electron-Beam-Lithographed Nanostructures as Reference Materials for Label-Free Scattered-Light Biosensing of Single Filoviruses. SENSORS 2018; 18:s18061670. [PMID: 29789514 PMCID: PMC6021999 DOI: 10.3390/s18061670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 11/17/2022]
Abstract
Optical biosensors based on scattered-light measurements are being developed for rapid and label-free detection of single virions captured from body fluids. Highly controlled, stable, and non-biohazardous reference materials producing virus-like signals are valuable tools to calibrate, evaluate, and refine the performance of these new optical biosensing methods. To date, spherical polymer nanoparticles have been the only non-biological reference materials employed with scattered-light biosensing techniques. However, pathogens like filoviruses, including the Ebola virus, are far from spherical and their shape strongly affects scattered-light signals. Using electron beam lithography, we fabricated nanostructures resembling individual filamentous virions attached to a biosensing substrate (silicon wafer overlaid with silicon oxide film) and characterized their dimensions with scanning electron and atomic force microscopes. To assess the relevance of these nanostructures, we compared their signals across the visible spectrum to signals recorded from Ebola virus-like particles which exhibit characteristic filamentous morphology. We demonstrate the highly stable nature of our nanostructures and use them to obtain new insights into the relationship between virion dimensions and scattered-light signal.
Collapse
|