1
|
Nguyen T, Daiann Sosa Carrizo E, Cattey H, Fleurat‐Lessard P, Roger J, Hierso J. Tetranuclear Dicationic Aurophilic Gold(I) Catalysts in Enyne Cycloisomerization: Cooperativity for a Dramatic Shift in Selectivity. Chemistry 2022; 28:e202200769. [DOI: 10.1002/chem.202200769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Tuan‐Anh Nguyen
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR-CNRS 6302- Université Bourgogne-Franche- Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - E. Daiann Sosa Carrizo
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR-CNRS 6302- Université Bourgogne-Franche- Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Hélène Cattey
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR-CNRS 6302- Université Bourgogne-Franche- Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Paul Fleurat‐Lessard
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR-CNRS 6302- Université Bourgogne-Franche- Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Julien Roger
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR-CNRS 6302- Université Bourgogne-Franche- Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| | - Jean‐Cyrille Hierso
- Université de Bourgogne, Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR-CNRS 6302- Université Bourgogne-Franche- Comté (UBFC) 9, avenue Alain Savary 21078 Dijon France
| |
Collapse
|
2
|
Salvador D, Gimeno MC. From Thioureas to Thioquinolines through Isolated Benzothiazines by Gold Catalysis. Chemistry 2021; 27:18029-18032. [PMID: 34784083 PMCID: PMC9299892 DOI: 10.1002/chem.202103439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 01/18/2023]
Abstract
New benzothiazine heterocycles have been formed from thiourea derivatives by using different gold catalysts. The catalyst and the conditions were optimised towards the selective synthesis of six-membered benzothiazine heterocycles, characterised by X-ray diffraction. Interestingly, these organic compounds evolved under gold catalysis in basic medium to achieve the formation of amino thioquinolines through an unprecedented aromatisation process of the heterocycle. The reaction was also carried out stoichiometrically by reaction with gold complexes to afford thioquinolines coordinated to the gold fragment. Benzothiazine, amino thioquinoline heterocycles and gold-derived species have a great potential for biological applications.
Collapse
Affiliation(s)
- Daniel Salvador
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de ZaragozaPedro Cerbuna 1250009ZaragozaSpain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)CSIC-Universidad de ZaragozaPedro Cerbuna 1250009ZaragozaSpain
| |
Collapse
|
3
|
Wagner HE, Di Martino‐Fumo P, Boden P, Zimmer M, Klopper W, Breher F, Gerhards M. Structural Characterization and Lifetimes of Triple-Stranded Helical Coinage Metal Complexes: Synthesis, Spectroscopy and Quantum Chemical Calculations. Chemistry 2020; 26:10743-10751. [PMID: 32428347 PMCID: PMC7496093 DOI: 10.1002/chem.202001544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Indexed: 11/11/2022]
Abstract
This work reports on a series of polynuclear complexes containing a trinuclear Cu, Ag, or Au core in combination with the fac-isomer of the metalloligand [Ru(pypzH)3 ](PF6 )2 (pypzH=3-(pyridin-2-yl)pyrazole). These (in case of the Ag and Au containing species) newly synthesized compounds of the general formula [{Ru(pypz)3 }2 M3 ](PF6 ) (2: M=Cu; 3: M=Ag; 4: M=Au) contain triple-stranded helical structures in which two ruthenium moieties are connected by three N-M-N (M=Cu, Ag, Au) bridges. In order to obtain a detailed description of the structure both in the electronic ground and excited states, extensive spectroscopic and quantum chemical calculations are applied. The equilateral coinage metal core triangle in the electronic ground state of 2-4 is distorted in the triplet state. Furthermore, the analyses offer a detailed description of electronic excitations. By using time-resolved IR spectroscopy from the microsecond down to the nanosecond regime, both the vibrational spectra and the lifetime of the lowest lying electronically excited triplet state can be determined. The lifetimes of these almost only non-radiative triplet states of 2-4 show an unusual effect in a way that the Au-containing complex 4 has a lifetime which is by more than a factor of five longer than in case of the Cu complex 2. Thus, the coinage metals have a significant effect on the electronically excited state, which is localized on a pypz ligand coordinated to the Ru atom indicating an unusual cooperative effect between two moieties of the complex.
Collapse
Affiliation(s)
- Hanna E. Wagner
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Patrick Di Martino‐Fumo
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Pit Boden
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Manuel Zimmer
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Willem Klopper
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Markus Gerhards
- Chemistry Department and Research Center OptimasTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| |
Collapse
|
4
|
Merz LS, Ballmann J, Gade LH. Phosphines and
N
‐Heterocycles Joining Forces: an Emerging Structural Motif in PNP‐Pincer Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
5
|
Ingner FJL, Schmitt A, Orthaber A, Gates PJ, Pilarski LT. Mild and Efficient Synthesis of Diverse Organo-Au I -L Complexes in Green Solvents. CHEMSUSCHEM 2020; 13:2032-2037. [PMID: 31951303 PMCID: PMC7277043 DOI: 10.1002/cssc.201903415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
An exceptionally mild and efficient method was developed for the preparation of (hetero)aryl-AuI -L complexes using ethanol or water as the reaction medium at room temperature and Ar-B(triol)K boronates as the transmetalation partner. The reaction does not need an exogeneous base or other additives, and quantitative yields can be achieved through a simple filtration as the only required purification method, which obviates considerable waste associated with alternative workup methods. A broad reaction scope was demonstrated with respect to both the L and (hetero)aryl ligands on product Au complexes. Despite the polar reaction medium, large polycyclic aromatic hydrocarbon units can be incorporated on the Au complexes in very good to excellent yields. The approach was demonstrated for the chemoselective manipulation of orthogonally protected aryl boronates to afford a new class of N-heterocyclic carbene-Au-aryl complexes. A mechanistic rationale was proposed.
Collapse
Affiliation(s)
| | | | - Andreas Orthaber
- Department of Chemistry—ÅngströmUppsala UniversityBOX 52375-120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
6
|
Siah HSM, Fiksdahl A. Preparation and Catalytic Activity of Novel σ,π-Dual Gold(I) Acetylide Complexes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Huey-San Melanie Siah
- Department of Chemistry; Norwegian University of Science and Technology; Hoegskoleveien 7491 Trondheim Norway
| | - Anne Fiksdahl
- Department of Chemistry; Norwegian University of Science and Technology; Hoegskoleveien 7491 Trondheim Norway
| |
Collapse
|
7
|
van der Vlugt JI. Radical-Type Reactivity and Catalysis by Single-Electron Transfer to or from Redox-Active Ligands. Chemistry 2019; 25:2651-2662. [PMID: 30084211 PMCID: PMC6471147 DOI: 10.1002/chem.201802606] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Controlled ligand-based redox-activity and chemical non-innocence are rapidly gaining importance for selective (catalytic) processes. This Concept aims to provide an overview of the progress regarding ligand-to-substrate single-electron transfer as a relatively new mode of operation to exploit ligand-centered reactivity and catalysis based thereon.
Collapse
Affiliation(s)
- Jarl Ivar van der Vlugt
- Bio-Inspired Homogeneous and Supramolecular Catalysis Groupvan ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamNetherlands
| |
Collapse
|
8
|
Jongbloed LS, Vogt N, Sandleben A, de Bruin B, Klein A, van der Vlugt JI. Nickel-Alkyl Complexes with a Reactive PNC-Pincer Ligand. Eur J Inorg Chem 2018; 2018:2408-2418. [PMID: 29937691 PMCID: PMC6001697 DOI: 10.1002/ejic.201800168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 11/26/2022]
Abstract
Based on previous work related to the design and application of rigid tridentate phosphine-pyridine-phenyl coordination offered by a PNC-pincer ligand upon cyclometalation to nickel, the synthesis, spectroscopic and solid state characterization and redox-reactivity of two NiII(PNC) complexes featuring either a methyl (2CH3 ) or CF3 co-ligand (2CF3 ) are described. One-electron oxidation is proposed to furnish C-C reductive elimination, as deduced from a combined chemical, electrochemical, spectroscopic and computational study. One-electron reduction results in a ligand-centered radical anion, as supported by electrochemistry, UV spectroelectrochemistry, EPR spectroscopy, and DFT calculations. This further attenuates the breadth of chemical reactivity offered by such PNC-pincer ligands.
Collapse
Affiliation(s)
- Linda S. Jongbloed
- Homogeneous, Bioinspired and Supramolecular Catalysis, van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Nicolas Vogt
- Department für ChemieInstitut für Anorganische ChemieUniversität zu KölnGreinstraße 650939KölnGermany
| | - Aaron Sandleben
- Department für ChemieInstitut für Anorganische ChemieUniversität zu KölnGreinstraße 650939KölnGermany
| | - Bas de Bruin
- Homogeneous, Bioinspired and Supramolecular Catalysis, van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Axel Klein
- Department für ChemieInstitut für Anorganische ChemieUniversität zu KölnGreinstraße 650939KölnGermany
| | - Jarl Ivar van der Vlugt
- Homogeneous, Bioinspired and Supramolecular Catalysis, van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
9
|
Grajeda J, Nova A, Balcells D, Bruch QJ, Wragg DS, Heyn RH, Miller AJM, Tilset M. Synthesis and Characterization of Stable Gold(III) PNP Pincer Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Javier Grajeda
- Department of Chemistry University of North Carolina at Chapel Hill 27516‐3290 Chapel Hill NC USA
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo P.O. Box 1033 Blindern 0315 Oslo Norway
| | - Ainara Nova
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo P.O. Box 1033 Blindern 0315 Oslo Norway
| | - David Balcells
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo P.O. Box 1033 Blindern 0315 Oslo Norway
| | - Quinton J. Bruch
- Department of Chemistry University of North Carolina at Chapel Hill 27516‐3290 Chapel Hill NC USA
| | - David S. Wragg
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo P.O. Box 1033 Blindern 0315 Oslo Norway
| | | | - Alexander J. M. Miller
- Department of Chemistry University of North Carolina at Chapel Hill 27516‐3290 Chapel Hill NC USA
| | - Mats Tilset
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences University of Oslo P.O. Box 1033 Blindern 0315 Oslo Norway
| |
Collapse
|
10
|
Huang Y, Cui G, Zhao Y, Wang H, Li Z, Dai S, Wang J. Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO 2 by Ionic Liquids. Angew Chem Int Ed Engl 2017; 56:13293-13297. [PMID: 28857376 DOI: 10.1002/anie.201706280] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/20/2017] [Indexed: 12/12/2022]
Abstract
A novel strategy based on the concept of preorganization and cooperation has been designed for a superior capacity to capture low-concentration CO2 by imide-based ionic liquids. By using this strategy, for the first time, an extremely high gravimetric CO2 capacity of up to 22 wt % (1.65 mol mol-1 ) and excellent reversibility (16 cycles) have been achieved from 10 vol. % of CO2 in N2 when using an ionic liquid having a preorganized anion. Through a combination of quantum-chemical calculations and spectroscopic investigations, it is suggested that cooperative interactions between CO2 and multiple active sites in the preorganized anion are the driving force for the superior CO2 capacity and excellent reversibility.
Collapse
Affiliation(s)
- Yanjie Huang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guokai Cui
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yuling Zhao
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Huiyong Wang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhiyong Li
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jianji Wang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
11
|
Huang Y, Cui G, Zhao Y, Wang H, Li Z, Dai S, Wang J. Preorganization and Cooperation for Highly Efficient and Reversible Capture of Low-Concentration CO2
by Ionic Liquids. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yanjie Huang
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Guokai Cui
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Yuling Zhao
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Huiyong Wang
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Zhiyong Li
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Sheng Dai
- Chemical Sciences Division; Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
- Department of Chemistry; University of Tennessee; Knoxville TN 37996 USA
| | - Jianji Wang
- Henan Key Laboratory of Green Chemistry; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| |
Collapse
|
12
|
Vreeken V, Siegler MA, van der Vlugt JI. Controlled Interconversion of a Dinuclear Au Species Supported by a Redox-Active Bridging PNP Ligand Facilitates Ligand-to-Gold Electron Transfer. Chemistry 2017; 23:5585-5594. [PMID: 28248000 PMCID: PMC5413818 DOI: 10.1002/chem.201700360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Redox non-innocent ligands have recently emerged as interesting tools to obtain new reactivity with a wide variety of metals. However, gold has almost been neglected in this respect. Here, we report mechanistic investigations related to a rare example of ligand-based redox chemistry in the coordination sphere of gold. The dinuclear metal-centered mixed-valent AuI -AuIII complex 1, supported by monoanionic diarylamido-diphosphine ligand PNPPr and with three chlorido ligands overall, undergoes a complex series of reactions upon halide abstraction by silver salt or Lewis acids such as gallium trichloride. Formation of the ultimate AuI -AuI complex 2 requires the intermediacy of AuI -AuI dimers 5 and 7 as well as the unique AuIII -AuIII complex 6, both of which are interconverted in a feedback loop. Finally, unprecedented ortho-selective C-H activation of the redox-active PNP ligand results in the carbazolyldiphosphine derivative PN*PPr via ligand-to-metal two-electron transfer. This work demonstrates that the redox-chemistry of gold may be significantly expanded and modified when using a reactive ligand scaffold.
Collapse
Affiliation(s)
- Vincent Vreeken
- Homogeneous, Supramolecular & Bio-inspired CatalysisVan 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamthe Netherlands
| | | | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular & Bio-inspired CatalysisVan 't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamthe Netherlands
| |
Collapse
|
13
|
Brill M, Nahra F, Gómez-Herrera A, Zinser C, Cordes DB, Slawin AMZ, Nolan SP. Gold-N-Heterocyclic Carbene Complexes of Mineral Acids. ChemCatChem 2016. [DOI: 10.1002/cctc.201601290] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcel Brill
- EaStCHEM School of Chemistry; University of St Andrews; St Andrews KY16 9ST UK
| | - Fady Nahra
- Department of Inorganic and Physical Chemistry; Ghent University; Krijgslaan 281-S3 9000 Gent Belgium
| | | | - Caroline Zinser
- EaStCHEM School of Chemistry; University of St Andrews; St Andrews KY16 9ST UK
| | - David B. Cordes
- EaStCHEM School of Chemistry; University of St Andrews; St Andrews KY16 9ST UK
| | | | - Steven P. Nolan
- Department of Inorganic and Physical Chemistry; Ghent University; Krijgslaan 281-S3 9000 Gent Belgium
- Chemistry Department, College of Science; King Saud University; P.O. Box 2455 Riyadh 11451 Saudi Arabia
| |
Collapse
|