1
|
Qiao H, Michalland J, Huang Q, Zard SZ. A Versatile Route to Acyl (MIDA)Boronates. Chemistry 2023; 29:e202302235. [PMID: 37477346 DOI: 10.1002/chem.202302235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
A modular approach to highly functional acyl (MIDA)boronates is described. It involves the generation of the hitherto unknown radical derived from acetyl (MIDA)boronate and its capture by various alkenes, including electronically unbiased, unactivated alkenes. In contrast to the anion of acetyl (MIDA)boronate, which has not so far been employed in synthesis, the corresponding radical is well behaved and readily produced from the novel α-xanthyl acetyl (MIDA)boronate. This shelf-stable, easily prepared solid is a convenient acyl (MIDA)boronate transfer agent that provides a direct entry to numerous otherwise inaccessible structures, including latent 1,4-dicarbonyl derivatives that can be transformed into B(MIDA) substituted pyrroles and furans. A competition experiment indicated the acyl (MIDA)boronate substituted radical to be more stable than the all-carbon acetonyl radical but somewhat less reactive in additions to alkenes.
Collapse
Affiliation(s)
- Hui Qiao
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Qi Huang
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole polytechnique, 91128, Palaiseau Cedex, France
| |
Collapse
|
2
|
Zhang X, Friedrich A, Marder TB. Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds. Chemistry 2022; 28:e202201329. [PMID: 35510606 PMCID: PMC9400893 DOI: 10.1002/chem.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B2 pin2 ) or bis(neopentane glycolato)diboron (B2 neop2 ) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon-skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N-methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late-stage conversion of carboxylic acid-containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p-toluoyl chloride and an NHC-copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
3
|
Zhao H, Luo Z, Yang J, Li B, Han J, Xu L, Lai W, Walsh PJ. Ligand‐Promoted Rh
I
‐Catalyzed C2‐Selective C−H Alkenylation and Polyenylation of Imidazoles with Alkenyl Carboxylic Acids. Chemistry 2022; 28:e202200441. [DOI: 10.1002/chem.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
- Department of Chemistry School of Chinese Pharmacy Beijing University of Chinese Medicine Beijing 102488 P. R. China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Ji Yang
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Bohan Li
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Jiahong Han
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Wenzhen Lai
- Department of Chemistry Renmin University of China Beijing 100872 P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories Penn/Merck Laboratory for High-Throughput Experimentation Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
4
|
Wang C, Lai Z, Xie H, Cui S. Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of β‐Amino Amides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaorong Wang
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
| | - Zhencheng Lai
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
| | - Hujun Xie
- School of Food Science and Biotechnology Zhejiang Gongshang University 18 Xuezheng Street, Xiasha Higher Education Campus, Hangzhou 310018 Zhejiang Province China
| | - Sunliang Cui
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences China
| |
Collapse
|
5
|
Cheng LJ, Zhao S, Mankad NP. One-Step Synthesis of Acylboron Compounds via Copper-Catalyzed Carbonylative Borylation of Alkyl Halides*. Angew Chem Int Ed Engl 2021; 60:2094-2098. [PMID: 33090619 DOI: 10.1002/anie.202012373] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 01/11/2023]
Abstract
A copper-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in situ formed tetracoordinated acylboron intermediates with aqueous KHF2 . A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary, and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.
Collapse
Affiliation(s)
- Li-Jie Cheng
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Siling Zhao
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| | - Neal P Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL, 60607, USA
| |
Collapse
|
6
|
Wang C, Lai Z, Xie H, Cui S. Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of β-Amino Amides. Angew Chem Int Ed Engl 2021; 60:5147-5151. [PMID: 33289272 DOI: 10.1002/anie.202014686] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 12/31/2022]
Abstract
Multicomponent reactions (MCRs) are powerful tool for the construction of polyfunctional molecules in an operationally simple and atom-economic manner, and the discovery of novel MCRs requests various building blocks. Herein, triazenyl alkynes were disclosed as versatile building blocks in a multicomponent reaction with carboxylic acids, aldehydes and anilines to furnish β-amino amides with the achievement of high diastereoselectivity and structural diversity. In this process, triazenyl alkynes were bifunctional so that the alkyne moiety acts as C2 fragment and triazene serves as directing group to modulate the transition state thus achieving high diastereoselectivity, in consistence with DFT calculations. Furthermore, the triazenyl group also enables diverse late-stage transformation. This protocol opens a new vision for the discovery of building block and rational design of MCRs.
Collapse
Affiliation(s)
- Chaorong Wang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha Higher Education Campus, Hangzhou, 310018, Zhejiang Province, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|
7
|
Cheng L, Zhao S, Mankad NP. One‐Step Synthesis of Acylboron Compounds via Copper‐Catalyzed Carbonylative Borylation of Alkyl Halides**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li‐Jie Cheng
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Siling Zhao
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| | - Neal P. Mankad
- Department of Chemistry University of Illinois at Chicago 845 W. Taylor St. Chicago IL 60607 USA
| |
Collapse
|
8
|
Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Formyl MIDA Boronate: C 1 Building Block Enables Straightforward Access to α-Functionalized Organoboron Derivatives. Angew Chem Int Ed Engl 2020; 59:18016-18022. [PMID: 32621386 DOI: 10.1002/anie.202007651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Formyl MIDA boronate has been known to be an elusive type of acylboronate that has not been obtained to date. In this work, an approach to the one-pot preparation and chemical transformations of formyl MIDA boronate were developed to provide new types of α-functionalized organoboron compounds. Among them are acylboronate reagents which present boron-substituted analogues of ynones and β-dicarbonyl compounds. The developed synthetic procedures, utilizing formyl MIDA boronate, are tolerant to diverse functional groups, making this reagent an advantageous C1 building block for extending the scope of organoboron chemistry.
Collapse
Affiliation(s)
- Yevhen M Ivon
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Ivan V Mazurenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Yuliya O Kuchkovska
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Zoya V Voitenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine.,Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01601, Ukraine
| |
Collapse
|
9
|
Wu D, Taguchi J, Tanriver M, Bode JW. Synthesis of Acylboron Compounds. Angew Chem Int Ed Engl 2020; 59:16847-16858. [PMID: 32510826 DOI: 10.1002/anie.202005050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Acylboron compounds are emerging as versatile functional groups with applications in multiple research fields. Their synthesis, however, is still challenging and requires innovative methods. This Minireview provides an overview on the obstacles of acylboron synthesis and highlights notable advances within the last three years on new strategies to overcome the challenges posed by the formation of acyl-boron bonds.
Collapse
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Jeffrey W Bode
- Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
10
|
Ivon YM, Mazurenko IV, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Formyl MIDA Boronate: C
1
Building Block Enables Straightforward Access to α‐Functionalized Organoboron Derivatives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yevhen M. Ivon
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Ivan V. Mazurenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Yuliya O. Kuchkovska
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Zoya V. Voitenko
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
11
|
Affiliation(s)
- Dino Wu
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jumpei Taguchi
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias Tanriver
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry Eidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
12
|
Ivon YM, Kuchkovska YO, Voitenko ZV, Grygorenko OO. Aliphatic α-Boryl-α-bromoketones: Synthesis and Reactivity. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yevhen M. Ivon
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Yuliya O. Kuchkovska
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Zoya V. Voitenko
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- Taras Shevchenko National University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
13
|
Taguchi J, Matsuura S, Seki T, Ito H. Synthesis and Tunable Optical Properties of C,N-Chelated Borate Luminophores Derived from Potassium Acyltrifluoroborates. Chemistry 2020; 26:2450-2455. [PMID: 31863512 DOI: 10.1002/chem.201904983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/12/2022]
Abstract
A new class of borate luminophores has been synthesized by a simple two-step reaction using potassium acyltrifluoroborates (KATs) as starting materials. The hydrazones obtained from reactions between KATs and 2-hydrazinopyridines followed by a cyclization resulted in the unprecedented formation of C,N-chelated six-membered bora-heterocycles. Under consideration of the results of DFT and TD-DFT calculations, four luminophores based on such bora-heterocycles are designed and synthesized, which exhibit a tunable fluorescence range from blue to red in the solid state. Moreover, one of the luminophores exhibits mechanofluorochromism from blue to yellow/green. As a result of the aforementioned mechanochromism of one of these luminophores, white-color emission was achieved by simply mixing the four luminophores.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satsuki Matsuura
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Tomohiro Seki
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
14
|
Tan DH, Cai YH, Zeng YF, Lv WX, Yang L, Li Q, Wang H. Diversity-Oriented Synthesis of α-Functionalized Acylborons and Borylated Heteroarenes by Nucleophilic Ring Opening of α-Chloroepoxyboronates. Angew Chem Int Ed Engl 2019; 58:13784-13788. [PMID: 31347254 DOI: 10.1002/anie.201907349] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/24/2019] [Indexed: 12/22/2022]
Abstract
The ring-opening reactions of N-methyliminodiacetyl (MIDA) α-chloroepoxyboronates with different nucleophiles allow the modular synthesis of a diverse array of organoboronates. These include seven types of α-functionalized acylboronates and seven types of borylated heteroarenes, some of which are difficult-to-access products using alternative methods. The common synthons, α-chloroepoxyboronates, could be viably synthesized by a two-step procedure from the corresponding alkenyl MIDA boronates. Mild reaction conditions, good functional-group tolerance, and generally good efficiency were observed. The utility of the products was also demonstrated.
Collapse
Affiliation(s)
- Dong-Hang Tan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuan-Hong Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yao-Fu Zeng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xin Lv
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
15
|
Neochoritis CG, Zarganes-Tzitzikas T, Novotná M, Mitríková T, Wang Z, Kurpiewska K, Kalinowska-Tłuścik J, Dömling A. Isocyanide-Based Multicomponent Reactions of Free Phenylboronic Acids. EUROPEAN JOURNAL OF CHEMISTRY (PRINT) 2019; 2019:6132-6137. [PMID: 33981465 PMCID: PMC8112803 DOI: 10.1002/ejoc.201901187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/14/2022]
Abstract
Boronic acids are amongst the most useful synthetic intermediates, frequently used by modern drug design. However, their access and fast synthesis of libraries are often problematic. We present a methodology on the synthesis of drug-like scaffolds via IMCRs with unprotected phenylboronic acids. To demonstrate an application of our approach, we also performed one-pot Suzuki couplings on the primary MCR scaffolds. Moreover, we performed a thorough data-mining of the Cambridge Structural Database, revealing interesting geometrical features.
Collapse
Affiliation(s)
- Constantinos G Neochoritis
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, 9713 AV, The Netherlands
- Department of Chemistry, University of Crete, Panepistimioupoli Vouton, T.K 70013 Iraklio, Crete, Greece
| | - Tryfon Zarganes-Tzitzikas
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, 9713 AV, The Netherlands
| | - Michaela Novotná
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, 9713 AV, The Netherlands
| | - Tatiana Mitríková
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, 9713 AV, The Netherlands
| | - Zefeng Wang
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, 9713 AV, The Netherlands
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | | | - Alexander Dömling
- Department of Pharmacy, Drug Design Group, University of Groningen, A. Deusinglaan 1, 9713 AV, The Netherlands
| |
Collapse
|
16
|
Holownia A, Tien C, Diaz DB, Larson RT, Yudin AK. Carboxyboronate: A Versatile C1 Building Block. Angew Chem Int Ed Engl 2019; 58:15148-15153. [DOI: 10.1002/anie.201907486] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/31/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Diego B. Diaz
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development, MRL Merck & Co Kenilworth NJ 07033 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| |
Collapse
|
17
|
Holownia A, Tien C, Diaz DB, Larson RT, Yudin AK. Carboxyboronate: A Versatile C1 Building Block. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907486] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aleksandra Holownia
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Chieh‐Hung Tien
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Diego B. Diaz
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| | - Reed T. Larson
- Process Research & Development, MRL Merck & Co Kenilworth NJ 07033 USA
| | - Andrei K. Yudin
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George. Toronto ON M5S 3H6 Canada
| |
Collapse
|
18
|
Tan D, Cai Y, Zeng Y, Lv W, Yang L, Li Q, Wang H. Diversity‐Oriented Synthesis of α‐Functionalized Acylborons and Borylated Heteroarenes by Nucleophilic Ring Opening of α‐Chloroepoxyboronates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong‐Hang Tan
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Yuan‐Hong Cai
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Yao‐Fu Zeng
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Wen‐Xin Lv
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Ling Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal ResourcesSchool of Chemistry and Pharmaceutical Sciences ofGuangxi Normal University Guilin 541004 China
| |
Collapse
|
19
|
Killam Research Fellowships: D. G. Hall, A. K. Yudin / NAS Award in Chemical Sciences: J. K. Barton. Angew Chem Int Ed Engl 2019; 58:9677. [PMID: 31240786 DOI: 10.1002/anie.201906959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Killam Research Fellowships: D. G. Hall, A. K. Yudin / NAS Award in Chemical Sciences: J. K. Barton. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Taguchi J, Takeuchi T, Takahashi R, Masero F, Ito H. Concise Synthesis of Potassium Acyltrifluoroborates from Aldehydes through Copper(I)-Catalyzed Borylation/Oxidation. Angew Chem Int Ed Engl 2019; 58:7299-7303. [PMID: 30844125 DOI: 10.1002/anie.201901748] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Indexed: 12/12/2022]
Abstract
Potassium acyltrifluoroborates (KATs) were prepared through copper(I)-catalyzed borylation of aldehydes and subsequent oxidation. This synthetic route is characterized by the wide range of aldehydes accessible, favorable step economy, mild reaction conditions, and tolerance of various functional groups, and it enables the facile generation of a range of KATs, for example, bearing halide, sulfide, acetal, or ester moieties. Moreover, this method was applied to the three-step synthesis of various α-amino acid analogues that bear a KAT moiety on the C-terminus by using naturally occurring amino acids as the starting material.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Takumi Takeuchi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Rina Takahashi
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Fabio Masero
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Bioscience, ETH Zürich, 8093, Zürich, Switzerland
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
22
|
Taguchi J, Takeuchi T, Takahashi R, Masero F, Ito H. Concise Synthesis of Potassium Acyltrifluoroborates from Aldehydes through Copper(I)‐Catalyzed Borylation/Oxidation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jumpei Taguchi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Takumi Takeuchi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Rina Takahashi
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Fabio Masero
- Laboratorium für Organische ChemieDepartment of Chemistry and Applied BioscienceETH Zürich 8093 Zürich Switzerland
| | - Hajime Ito
- Division of Applied ChemistryGraduate School of Engineering Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD)Hokkaido University Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
23
|
Carreras J, Caballero A, Pérez PJ. Alkenyl Boronates: Synthesis and Applications. Chem Asian J 2019; 14:329-343. [DOI: 10.1002/asia.201801559] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Javier Carreras
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá (IQAR) 28805-Alcalá de Henares Madrid Spain
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007- Huelva Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC CIQSO-Centro de Investigación en Química Sostenible and Departamento de QuímicaUniversidad de Huelva 21007- Huelva Spain
| |
Collapse
|
24
|
Trobe M, Burke MD. The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. Angew Chem Int Ed Engl 2018; 57:4192-4214. [PMID: 29513400 PMCID: PMC5912692 DOI: 10.1002/anie.201710482] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/05/2017] [Indexed: 11/10/2022]
Abstract
Today we are poised for a transition from the highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of different types of molecules with the push of a button. Creating machines that are capable of making many different types of small molecules on demand, akin to that which has been achieved on the macroscale with 3D printers, is challenging. Yet important progress is being made toward this objective with two complementary approaches: 1) Automation of customized synthesis routes to different targets by machines that enable the use of many reactions and starting materials, and 2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale.
Collapse
Affiliation(s)
- Melanie Trobe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Martin D. Burke
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| |
Collapse
|
25
|
Trobe M, Burke MD. Die molekulare industrielle Revolution: zur automatisierten Synthese organischer Verbindungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Melanie Trobe
- Department of Chemistry University of Illinois Urbana-Champaign 600 S. Mathews, 454 RAL Urbana-Champaign IL 61801 USA
| | - Martin D. Burke
- Department of Chemistry University of Illinois Urbana-Champaign 600 S. Mathews, 454 RAL Urbana-Champaign IL 61801 USA
| |
Collapse
|
26
|
Lepage ML, Lai S, Peressin N, Hadjerci R, Patrick BO, Perrin DM. Direct Access to MIDA Acylboronates through Mild Oxidation of MIDA Vinylboronates. Angew Chem Int Ed Engl 2017; 56:15257-15261. [DOI: 10.1002/anie.201707125] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mathieu L. Lepage
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Samson Lai
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Nicolas Peressin
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Romain Hadjerci
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Brian O. Patrick
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - David M. Perrin
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
27
|
Lepage ML, Lai S, Peressin N, Hadjerci R, Patrick BO, Perrin DM. Direct Access to MIDA Acylboronates through Mild Oxidation of MIDA Vinylboronates. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mathieu L. Lepage
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Samson Lai
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Nicolas Peressin
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Romain Hadjerci
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Brian O. Patrick
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - David M. Perrin
- Chemistry Department; University of British Columbia; 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
28
|
Taguchi J, Ikeda T, Takahashi R, Sasaki I, Ogasawara Y, Dairi T, Kato N, Yamamoto Y, Bode JW, Ito H. Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707933] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jumpei Taguchi
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Toshiki Ikeda
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Rina Takahashi
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Ikuo Sasaki
- Department of Chemistry and Biological Science; College of Science and Engineering; Aoyama Gakuin University; 5-10-1, Fuchinobe Chuo-ku, Sagamihara-shi 252-5258 Japan
| | - Yasushi Ogasawara
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Tohru Dairi
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Naoya Kato
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yasunori Yamamoto
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Bioscience; ETH Zürich; 8093 Zürich Switzerland
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
29
|
Taguchi J, Ikeda T, Takahashi R, Sasaki I, Ogasawara Y, Dairi T, Kato N, Yamamoto Y, Bode JW, Ito H. Synthesis of Acylborons by Ozonolysis of Alkenylboronates: Preparation of an Enantioenriched Amino Acid Acylboronate. Angew Chem Int Ed Engl 2017; 56:13847-13851. [DOI: 10.1002/anie.201707933] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jumpei Taguchi
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Toshiki Ikeda
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Rina Takahashi
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Ikuo Sasaki
- Department of Chemistry and Biological Science; College of Science and Engineering; Aoyama Gakuin University; 5-10-1, Fuchinobe Chuo-ku, Sagamihara-shi 252-5258 Japan
| | - Yasushi Ogasawara
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Tohru Dairi
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Naoya Kato
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yasunori Yamamoto
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Bioscience; ETH Zürich; 8093 Zürich Switzerland
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; Kita 13 Nishi 8 Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
30
|
Preise des Chemical Institute of Canada und der Canadian Society for Chemistry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Chemical Institute of Canada and Canadian Society for Chemistry Awards. Angew Chem Int Ed Engl 2017; 56:5975-5977. [DOI: 10.1002/anie.201703739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|