1
|
Wang CY, Zhao L, Kaiser RI. Gas-Phase Preparation of the 14π Hückel Polycyclic Aromatic Anthracene and Phenanthrene Isomers (C 14H 10) via the Propargyl Addition-BenzAnnulation (PABA) Mechanism. Chemphyschem 2024; 25:e202400151. [PMID: 38635959 DOI: 10.1002/cphc.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) imply the missing link between resonantly stabilized free radicals and carbonaceous nanoparticles, commonly referred to as soot particles in combustion systems and interstellar grains in deep space. Whereas gas phase formation pathways to the simplest PAH - naphthalene (C10H8) - are beginning to emerge, reaction pathways leading to the synthesis of the 14π Hückel aromatic PAHs anthracene and phenanthrene (C14H10) are still incomplete. Here, by utilizing a chemical microreactor in conjunction with vacuum ultraviolet (VUV) photoionization (PI) of the products followed by detection of the ions in a reflectron time-of-flight mass spectrometer (ReTOF-MS), the reaction between the 1'- and 2'-methylnaphthyl radicals (C11H9⋅) with the propargyl radical (C3H3⋅) accesses anthracene (C14H10) and phenanthrene (C14H10) via the Propargyl Addition-BenzAnnulation (PABA) mechanism in conjunction with a hydrogen assisted isomerization. The preferential formation of the thermodynamically less stable anthracene isomer compared to phenanthrene suggests a kinetic, rather than a thermodynamics control of the reaction.
Collapse
Affiliation(s)
- Chang Yang Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Long Zhao
- School of Nuclear Science and Technology, Deep Space Exploration Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96888, USA
| |
Collapse
|
2
|
Goettl SJ, He C, Yang Z, Kaiser RI, Somani A, Portela-Gonzalez A, Sander W, Sun BJ, Fatimah S, Kadam KP, Chang AHH. Unconventional gas-phase synthesis of biphenyl and its atropisomeric methyl-substituted derivatives. Phys Chem Chem Phys 2024; 26:18321-18332. [PMID: 38912536 DOI: 10.1039/d4cp00765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The biphenyl molecule (C12H10) acts as a fundamental molecular backbone in the stereoselective synthesis of organic materials due to its inherent twist angle causing atropisomerism in substituted derivatives and in molecular mass growth processes in circumstellar environments and combustion systems. Here, we reveal an unconventional low-temperature phenylethynyl addition-cyclization-aromatization mechanism for the gas-phase preparation of biphenyl (C12H10) along with ortho-, meta-, and para-substituted methylbiphenyl (C13H12) derivatives through crossed molecular beams and computational studies providing compelling evidence on their formation via bimolecular gas-phase reactions of phenylethynyl radicals (C6H5CC, X2A1) with 1,3-butadiene-d6 (C4D6), isoprene (CH2C(CH3)CHCH2), and 1,3-pentadiene (CH2CHCHCHCH3). The dynamics involve de-facto barrierless phenylethynyl radical additions via submerged barriers followed by facile cyclization and hydrogen shift prior to hydrogen atom emission and aromatization to racemic mixtures (ortho, meta) of biphenyls in overall exoergic reactions. These findings not only challenge our current perception of biphenyls as high temperature markers in combustion systems and astrophysical environments, but also identify biphenyls as fundamental building blocks of complex polycyclic aromatic hydrocarbons (PAHs) such as coronene (C24H12) eventually leading to carbonaceous nanoparticles (soot, grains) in combustion systems and in deep space thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.
Collapse
Affiliation(s)
- Shane J Goettl
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Chao He
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Zhenghai Yang
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Ankit Somani
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44801, Germany.
| | | | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, Bochum 44801, Germany.
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| | - Siti Fatimah
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| | - Komal P Kadam
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| |
Collapse
|
3
|
Goettl SJ, Turner AM, Sun BJ, Chang AHH, Hemberger P, Kaiser RI. Gas-phase preparation of the dibenzo[ e,l]pyrene (C 24H 14) butterfly molecule via a phenyl radical-mediated ring annulation. Chem Commun (Camb) 2024; 60:1404-1407. [PMID: 38174640 DOI: 10.1039/d3cc05371g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A high temperature phenyl-mediated addition-cyclization-dehydrogenation mechanism to form peri-fused polycyclic aromatic hydrocarbon (PAH) derivatives-illustrated through the formation of dibenzo[e,l]pyrene (C24H14)-is explored through a gas-phase reaction of the phenyl radical (C6H5˙) with triphenylene (C18H12) utilizing photoelectron photoion coincidence spectroscopy (PEPICO) combined with electronic structure calculations. Low-lying vibrational modes of dibenzo[e,l]pyrene exhibit out-of-plane bending and are easily populated in high temperature environments such as combustion flames and circumstellar envelopes of carbon stars, thus stressing dibenzo[e,l]pyrene as a strong target for far-IR astronomical surveys.
Collapse
Affiliation(s)
- Shane J Goettl
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Andrew M Turner
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan.
| | | | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
4
|
Preitschopf T, Sturm F, Stroganova I, Lemmens AK, Rijs AM, Fischer I. IR/UV Double Resonance Study of the 2-Phenylallyl Radical and its Pyrolysis Products. Chemistry 2023; 29:e202202943. [PMID: 36479856 DOI: 10.1002/chem.202202943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Isolated 2-phenylallyl radicals (2-PA), generated by pyrolysis from a nitrite precursor, have been investigated by IR/UV ion dip spectroscopy using free electron laser radiation. 2-PA is a resonance-stabilized radical that is considered to be involved in the formation of polycyclic aromatic hydrocarbons (PAH) in combustion, but also in interstellar space. The radical is identified based on its gas-phase IR spectrum. Furthermore, a number of bimolecular reaction products are identified, showing that the self-reaction as well as reactions with unimolecular decomposition products of 2-PA form several PAH efficiently. Possible mechanisms are discussed and the chemistry of 2-PA is compared with the one of the related 2-methylallyl and phenylpropargyl radicals.
Collapse
Affiliation(s)
- Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Floriane Sturm
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Iuliia Stroganova
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Alexander K Lemmens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Anouk M Rijs
- Division of BioAnalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
5
|
He C, Kaiser RI, Lu W, Ahmed M, Reyes Y, Wnuk SF, Mebel AM. Exotic Reaction Dynamics in the Gas-Phase Preparation of Anthracene (C 14H 10) via Spiroaromatic Radical Transients in the Indenyl-Cyclopentadienyl Radical-Radical Reaction. J Am Chem Soc 2023; 145:3084-3091. [PMID: 36701838 DOI: 10.1021/jacs.2c12045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The gas-phase reaction between the 1-indenyl (C9H7•) radical and the cyclopentadienyl (C5H5•) radical has been investigated for the first time using synchrotron-based mass spectrometry coupled with a pyrolytic reactor. Soft photoionization with tunable vacuum ultraviolet photons afforded for the isomer-selective identification of the production of phenanthrene, anthracene, and benzofulvalene (C14H10). The classical theory prevalent in the literature proposing that radicals combine only at their specific radical centers is challenged by our discovery of an unusual reaction pathway that involves a barrierless combination of a resonantly stabilized hydrocarbon radical with an aromatic radical at the carbon atom adjacent to the traditional C1 radical center; this unconventional addition is followed by substantial isomerization into phenanthrene and anthracene via a category of exotic spiroaromatic intermediates. This result leads to a deeper understanding of the evolution of the cosmic carbon budget and provides new methodologies for the bottom-up synthesis of unique spiroaromatics that may be relevant for the synthesis of more complex aromatic carbon skeletons in deep space.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, United States
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Stanislaw F Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
6
|
Li J, Li N. Revisit on the assignment of electronic spectra of C11H9+ isomers. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Zhao L, Kaiser RI, Xu B, Ablikim U, Ahmed M, Evseev MM, Bashkirov EK, Azyazov VN, Mebel AM. A Unified Mechanism on the Formation of Acenes, Helicenes, and Phenacenes in the Gas Phase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Ralf I. Kaiser
- Department of Chemistry University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Bo Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Utuq Ablikim
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Musahid Ahmed
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | | | | | - Alexander M. Mebel
- Samara National Research University Samara 443086 Russia
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| |
Collapse
|
8
|
Zhao L, Kaiser RI, Xu B, Ablikim U, Ahmed M, Evseev MM, Bashkirov EK, Azyazov VN, Mebel AM. A Unified Mechanism on the Formation of Acenes, Helicenes, and Phenacenes in the Gas Phase. Angew Chem Int Ed Engl 2020; 59:4051-4058. [DOI: 10.1002/anie.201913037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Ralf I. Kaiser
- Department of Chemistry University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Bo Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Utuq Ablikim
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Musahid Ahmed
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | | | | | - Alexander M. Mebel
- Samara National Research University Samara 443086 Russia
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| |
Collapse
|
9
|
He C, Zhao L, Thomas AM, Galimova GR, Mebel AM, Kaiser RI. A combined experimental and computational study on the reaction dynamics of the 1-propynyl radical (CH 3CC; X 2A 1) with ethylene (H 2CCH 2; X 1A 1g) and the formation of 1-penten-3-yne (CH 2CHCCCH 3; X 1A'). Phys Chem Chem Phys 2019; 21:22308-22319. [PMID: 31576858 DOI: 10.1039/c9cp04073k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crossed molecular beam reactions of the 1-propynyl radical (CH3CC; X2A1) with ethylene (H2CCH2; X1A1g) and ethylene-d4 (D2CCD2; X1A1g) were performed at collision energies of 31 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio electronic structure and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations, we reveal that the reaction is initiated by the barrierless addition of the 1-propynyl radical to the π-electron density of the unsaturated hydrocarbon of ethylene leading to a doublet C5H7 intermediate(s) with a life time(s) longer than the rotation period(s). The reaction eventually produces 1-penten-3-yne (p1) plus a hydrogen atom with an overall reaction exoergicity of 111 ± 16 kJ mol-1. About 35% of p1 originates from the initial collision complex followed by C-H bond rupture via a tight exit transition state located 22 kJ mol-1 above the separated products. The collision complex (i1) can also undergo a [1,2] hydrogen atom shift to the CH3CHCCCH3 intermediate (i2) prior to a hydrogen atom release; RRKM calculations suggest that this pathway contributes to about 65% of p1. In higher density environments such as in combustion flames and circumstellar envelopes of carbon stars close to the central star, 1-penten-3-yne (p1) may eventually form the cyclopentadiene (c-C5H6) isomer via hydrogen atom assisted isomerization followed by hydrogen abstraction to the cyclopentadienyl radical (c-C5H5) as an important pathway to key precursors to polycyclic aromatic hydrocarbons (PAHs) and to carbonaceous nanoparticles.
Collapse
Affiliation(s)
- Chao He
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Long Zhao
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Aaron M Thomas
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Galiya R Galimova
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA. and Samara National Research University, Samara 443086, Russia
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA. and Samara National Research University, Samara 443086, Russia
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
10
|
Zhao L, Prendergast MB, Kaiser RI, Xu B, Ablikim U, Ahmed M, Sun B, Chen Y, Chang AHH, Mohamed RK, Fischer FR. Synthesis of Polycyclic Aromatic Hydrocarbons by Phenyl Addition–Dehydrocyclization: The Third Way. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
| | | | - Ralf I. Kaiser
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
| | - Bo Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Utuq Ablikim
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Musahid Ahmed
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Bing‐Jian Sun
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Yue‐Lin Chen
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Agnes H. H. Chang
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Rana K. Mohamed
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
| | - Felix R. Fischer
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
11
|
Zhao L, Prendergast MB, Kaiser RI, Xu B, Ablikim U, Ahmed M, Sun B, Chen Y, Chang AHH, Mohamed RK, Fischer FR. Synthesis of Polycyclic Aromatic Hydrocarbons by Phenyl Addition–Dehydrocyclization: The Third Way. Angew Chem Int Ed Engl 2019; 58:17442-17450. [DOI: 10.1002/anie.201909876] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
| | | | - Ralf I. Kaiser
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
| | - Bo Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Utuq Ablikim
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Musahid Ahmed
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Bing‐Jian Sun
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Yue‐Lin Chen
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Agnes H. H. Chang
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974 Taiwan, ROC
| | - Rana K. Mohamed
- Department of Chemistry University of Hawaii at Manoa Honolulu Hawaii 96822 USA
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
| | - Felix R. Fischer
- Department of Chemistry University of California Berkeley Berkeley CA 94720 USA
- Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Kavli Energy Nano Sciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
12
|
Majer K, Signorell R, Heringa MF, Goldmann M, Hemberger P, Bodi A. Valence Photoionization of Thymine: Ionization Energies, Vibrational Structure, and Fragmentation Pathways from the Slow to the Ultrafast. Chemistry 2019; 25:14192-14204. [PMID: 31469456 DOI: 10.1002/chem.201903282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 11/06/2022]
Abstract
The photoionization of thymine has been studied by using vacuum ultraviolet radiation and imaging photoelectron photoion coincidence spectroscopy after aerosol flash vaporization and bulk evaporation. The two evaporation techniques have been evaluated by comparison of the photoelectron spectra and breakdown diagrams. The adiabatic ionization energies for the first four electronic states were determined to be 8.922±0.008, 9.851±0.008, 10.30±0.02, and 10.82±0.01 eV. Vibrational features have been assigned for the first three electronic states with the help of Franck-Condon factor calculations based on density functional theory and wave function theory vibrational analysis within the harmonic approximation. The breakdown diagram of thymine, as supported by composite method ab initio calculations, suggests that the main fragment ions are formed in sequential HNCO-, CO-, and H-loss dissociation steps from the thymine parent ion, with the first step corresponding to a retro-Diels-Alder reaction. The dissociation rate constants were extracted from the photoion time-of-flight distributions and used together with the breakdown curves to construct a statistical model to determine 0 K appearance energies of 11.15±0.16 and 11.95±0.09 eV for the m/z 83 and 55 fragment ions, respectively. These results have allowed us to revise previously proposed fragmentation mechanisms and to propose a model for the final, nonstatistical H-loss step in the breakdown diagram, yielding the m/z 54 fragment ion at an appearance energy of 13.24 eV.
Collapse
Affiliation(s)
- Katharina Majer
- Paul Scherrer Institute, 5232, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Maarten F Heringa
- Paul Scherrer Institute, 5232, Villigen, Switzerland.,Present address: Givaudan Schweiz AG, 8310, Kemptthal, Switzerland
| | - Maximilian Goldmann
- Gymnasium Lerbermatt, 3098, Köniz, Switzerland.,Hochschule Luzern - Technik & Architektur, 6048, Horw, Switzerland
| | | | - Andras Bodi
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| |
Collapse
|
13
|
Zhao L, Xu B, Ablikim U, Lu W, Ahmed M, Evseev MM, Bashkirov EK, Azyazov VN, Howlader AH, Wnuk SF, Mebel AM, Kaiser RI. Gas‐Phase Synthesis of Triphenylene (C
18
H
12
). Chemphyschem 2019; 20:791-797. [DOI: 10.1002/cphc.201801154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Long Zhao
- Department of Chemistry University of Hawaii at Manoa Honolulu, Hawaii 96822 USA
| | - Bo Xu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Utuq Ablikim
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Wenchao Lu
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Musahid Ahmed
- Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | | | - Valeriy N. Azyazov
- Samara National Research University Samara 443086 Russia
- Department of Chemical & Electric Discharge Lasers Lebedev Physical Institute of RAS Samara 443011 Russia
| | - A. Hasan Howlader
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Alexander M. Mebel
- Samara National Research University Samara 443086 Russia
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Ralf I. Kaiser
- Department of Chemistry University of Hawaii at Manoa Honolulu, Hawaii 96822 USA
| |
Collapse
|
14
|
Thomas AM, Zhao L, He C, Mebel AM, Kaiser RI. A Combined Experimental and Computational Study on the Reaction Dynamics of the 1-Propynyl (CH3CC)–Acetylene (HCCH) System and the Formation of Methyldiacetylene (CH3CCCCH). J Phys Chem A 2018; 122:6663-6672. [DOI: 10.1021/acs.jpca.8b05530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron M. Thomas
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Long Zhao
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Chao He
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
15
|
Affiliation(s)
- Curt Wentrup
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australien
| |
Collapse
|
16
|
Wentrup C. Flash Vacuum Pyrolysis: Techniques and Reactions. Angew Chem Int Ed Engl 2017; 56:14808-14835. [PMID: 28675675 DOI: 10.1002/anie.201705118] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 12/13/2022]
Abstract
Flash vacuum pyrolysis (FVP) had its beginnings in the 1940s and 1950s, mainly through mass spectrometric detection of pyrolytically formed free radicals. In the 1960s many organic chemists started performing FVP experiments with the purpose of isolating new and interesting compounds and understanding pyrolysis processes. Meanwhile, many different types of apparatus and techniques have been developed, and it is the purpose of this review to present the most important methods as well as a survey of typical reactions and observations that can be achieved with the various techniques. This includes preparative FVP, chemical trapping reactions, matrix isolation, and low temperature spectroscopy of reactive intermediates and unstable molecules, the use of online mass, photoelectron, microwave, and millimeterwave spectroscopies, gas-phase laser pyrolysis, pulsed pyrolysis with supersonic jet expansion, very low pressure pyrolysis for kinetic investigations, solution-spray and falling-solid FVP for involatile compounds, and pyrolysis over solid supports and reagents. Moreover, the combination of FVP with matrix isolation and photochemistry is a powerful tool for investigations of reaction mechanism.
Collapse
Affiliation(s)
- Curt Wentrup
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| |
Collapse
|
17
|
Thomas AM, Lucas M, Yang T, Kaiser RI, Fuentes L, Belisario‐Lara D, Mebel AM. A Free‐Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds—Low Temperature Growth of Polycyclic Aromatic Hydrocarbons. Chemphyschem 2017; 18:1971-1976. [DOI: 10.1002/cphc.201700515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Aaron M. Thomas
- Department of Chemistry University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Michael Lucas
- Department of Chemistry University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Tao Yang
- Department of Chemistry University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Ralf I. Kaiser
- Department of Chemistry University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Luis Fuentes
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Daniel Belisario‐Lara
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| | - Alexander M. Mebel
- Department of Chemistry and Biochemistry Florida International University Miami FL 33199 USA
| |
Collapse
|