1
|
Xi J, Xue R, Li X, Lin Y, Peng G, Wang J, You S, Xu C, Zhang H, Chi L. Highly Selective On-Surface [2 + 2] Cycloaddition Induced by Hierarchical Metal-Organic Hybrids. J Phys Chem Lett 2023; 14:1585-1591. [PMID: 36748856 DOI: 10.1021/acs.jpclett.2c03913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
On-surface synthesis of phenylenes is a promising strategy to form extended π-conjugated frameworks but normally lacks selectivity in achieving uniform products. Herein we demonstrate that the debromination reaction of 2,3-dibromophenazine (DBPZ) on Au(111) and Ag(111) surfaces can vary significantly considering the involvement of metal-organic hybrids (MOHs). On Au(111), [2 + 2] and [2 + 2 + 2] cycloadditions facilitate instantaneously upon the debromination occurring, while on Ag(111), several MOHs have been observed under sequential thermal annealing, leading to finally the uniform [2 + 2] cycloaddition product exclusively. By means of scanning tunneling microscopy (STM) and bond-resolved atomic force microscopy (BR-AFM), we have unambiguously depicted the chemical structure of related reaction intermediates and unraveled the undocumented role of hierarchical evolution of MOHs in steering the chemical selectivity.
Collapse
Affiliation(s)
- Jiahao Xi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Renjie Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Xuechao Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Yu Lin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Guyue Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Junbo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Sifan You
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Chaojie Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
2
|
Han D, Zhu J. Surface-assisted fabrication of low-dimensional carbon-based nanoarchitectures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:343001. [PMID: 34111858 DOI: 10.1088/1361-648x/ac0a1b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
On-surface synthesis, as an alternative to traditional in-solution synthesis, has become an emerging research field and attracted extensive attention over the past decade due to its ability to fabricate nanoarchitectures with exotic properties. Compared to wet chemistry, the on-surface synthesis conducted on atomically flat solid surfaces under ultrahigh vacuum exhibits unprecedented characteristics and advantages, opening novel reaction pathways for chemical synthesis. Various low-dimensional nanostructures have been fabricated on solid surfaces (mostly metal surfaces) based on this newly developed approach. This paper reviews the classic and latest works regarding carbon-based low-dimensional nanostructures since the arrival of on-surface synthesis era. These nanostructures are categorized into zero-, one- and two-dimensional classes and each class is composed of numerous sub-nanostructures. For certain specific nanostructures, comprehensive reports are given, including precursor design, substrate choice, synthetic strategies and so forth. We hope that our review will shed light on the fabrication of some significant nanostructures in this young and promising scientific area.
Collapse
Affiliation(s)
- Dong Han
- National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei 230029, People's Republic of China
| |
Collapse
|
3
|
Zhang C, Kazuma E, Kim Y. Atomic‐Scale Visualization of the Stepwise Metal‐Mediated Dehalogenative Cycloaddition Reaction Pathways: Competition between Radicals and Organometallic Intermediates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chi Zhang
- Surface and Interface Science Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
4
|
Zhang C, Kazuma E, Kim Y. Atomic‐Scale Visualization of the Stepwise Metal‐Mediated Dehalogenative Cycloaddition Reaction Pathways: Competition between Radicals and Organometallic Intermediates. Angew Chem Int Ed Engl 2019; 58:17736-17744. [DOI: 10.1002/anie.201909111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/16/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Chi Zhang
- Surface and Interface Science Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
5
|
Zhang Y, Ding Y, Xie L, Ma H, Yao X, Zhang C, Yuan C, Xu W. On-Surface Synthesis of Adenine Oligomers via Ullmann Reaction. Chemphyschem 2017; 18:3544-3547. [PMID: 29028154 DOI: 10.1002/cphc.201701009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Indexed: 11/07/2022]
Abstract
Despite the fact that DNA bases have been well-studied on surface, the on-surface synthesis of one-dimensional DNA analogs through in situ reactions is still an interesting topic to be investigated. Herein, from the interplay of high-resolution scanning tunneling microscopy (STM) imaging and density functional theory (DFT) calculations, we have delicately designed a halogenated derivative of adenine as precursor to realize the combination of DNA bases and Ullmann reaction, and then successfully synthesized adenine oligomers on Au(111) via Ullmann coupling. This model system provides a possible bottom-up strategy of fabricating adenine oligomers on surface, which may further give access to man-made DNA strands with multiple bases.
Collapse
Affiliation(s)
- Yanmin Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Honghong Ma
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Xinyi Yao
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Chunxue Yuan
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai, 201804, P. R. China
| |
Collapse
|