1
|
Qiao H, Zhao K, Wang S, Xu X, Chen S, Kong X, Yang L, Jiao M, Zhai L. Construction of Covalent Triazine Frameworks with Electronic Donor-Acceptor System for Efficient Photocatalytic C-H Hydroxylation of Imidazole[1,2-α]Pyridine Derivatives. Chemistry 2024; 30:e202402246. [PMID: 39143661 DOI: 10.1002/chem.202402246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Covalent triazine frameworks (CTFs) are promising heterogeneous photocatalyst candidates owing to their excellent stability, conjugacy, and tunability. In this study, a series of CTFs decorated with different substituents (H, MeO, and F) were synthesised and utilised as photocatalysts for C-H activation reactions. The corresponding optoelectronic properties could be precisely regulated by the electronic effects of different substituents in the nanopore channels of the CTFs; these CTFs were effective photocatalysts for C-H activation in organic synthesis due to their unique structures and optoelectronic properties. Methoxy-substituted CTF (MeO-CTF) exhibited extraordinary catalytic performance and reusability in C-H functionalization by constructing an electronic donor-acceptor system, achieving the highest yield in the photocatalytic C3-H hydroxylation of 2-phenylimidazole[1,2-α]pyridine. This strategy provides a new scaffold for the rational design of CTFs as efficient photocatalysts for organic synthesis.
Collapse
Affiliation(s)
- Huijie Qiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Kun Zhao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Shixing Wang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiaoxu Xu
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Sicheng Chen
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China
| | - Liting Yang
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Mingli Jiao
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| | - Lipeng Zhai
- School of Materials and Chemical Engineering, Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Henan, 450007, P. R. China
| |
Collapse
|
2
|
Guo Y, Yang X, Sun R, Hu X, Shu C, Yang X, Gao H, Wang X, Tan B. A Dual-Active Covalent Triazine Framework Film for Efficient Visible-Light-Driven Hydrogen Peroxide Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403743. [PMID: 38973074 DOI: 10.1002/smll.202403743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Photocatalytic hydrogen peroxide production from water and oxygen offers a clean and sustainable alternative to the conventional energy-intensive anthraquinone oxidation method. Compared to powdered covalent triazine frameworks (CTFs), the film morphology of CTFs provides better connectivity in 2D, yielding several advantages: more efficient connections between active sites, reduced electron-hole pair recombination, increased resistance to superoxide radical induced corrosion, and decreased light scattering. Leveraging these benefits, it has incorporated dual active sites for both the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) into a CTF film system. This dual-active CTF film demonstrated an exceptional hydrogen peroxide production rate of 19 460 µmol h⁻¹ m⁻2 after 1 h and 17 830 µmol h⁻¹ m⁻2 after 5 h under visible light irradiation (≥420 nm) without the need for sacrificial agents.
Collapse
Affiliation(s)
- Yantong Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| | - Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| | - Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| | - Xunliang Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| | - Chang Shu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| | - Hui Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, Wuhan, 430074, P. R. China
| |
Collapse
|
3
|
Zhang J, Fu X, Qiu J, Wang C, Wang L, Feng J, Dong L, Long C, Wang X, Li D. Construction of High-Performance Anode of Potassium-Ion Batteries by Stripping Covalent Triazine Frameworks with Molten Salt. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401804. [PMID: 38924654 PMCID: PMC11348138 DOI: 10.1002/advs.202401804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Covalent triazine frameworks (CTFs) are promising battery electrodes owing to their designable functional groups, tunable pore sizes, and exceptional stability. However, their practical use is limited because of the difficulty in establishing stable ion adsorption/desorption sites. In this study, a melt-salt-stripping process utilizing molten trichloro iron (FeCl3) is used to delaminate the layer-stacked structure of fluorinated covalent triazine framework (FCTF) and generate iron-based ion storage active sites. This process increases the interlayer spacing and uniformly deposits iron-containing materials, enhancing electron and ion transport. The resultant melt-FeCl3-stripped FCTF (Fe@FCTF) shows excellent performance as a potassium ion battery with a high capacity of 447 mAh g-1 at 0.1 A g-1 and 257 mAh g-1 at 1.6 A g-1 and good cycling stability. Notably, molten-salt stripping is also effective in improving the CTF's Na+ and Li+ storage properties. A stepwise reaction mechanism of K/Na/Li chelation with C═N functional groups is proposed and verified by in situ X-ray diffraction testing (XRD), ex-situ X-ray photoelectron spectroscopy (XPS), and theoretical calculations, illustrating that pyrazines and iron coordination groups play the main roles in reacting with K+/Na+/Li+ cations. These results conclude that the Fe@FCTF is a suitable anode material for potassium-ion batteries (PIBs), sodium-ion batteries (SIBs), and lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
- Jingyi Zhang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Xuwang Fu
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Jiacheng Qiu
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Chao Wang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Li Wang
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Jianmin Feng
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Lei Dong
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Conglai Long
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Xiaowei Wang
- National Engineering Laboratory for High Efficiency Recovery of Refractory Nonferrous MetalsSchool of Metallurgy and EnvironmentCentral South UniversityChangsha410083P. R. China
| | - Dejun Li
- College of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| |
Collapse
|
4
|
Zheng LL, Li X, Wang D, Chen Y, Fu Q, Wu DS, Liu XZ, Zou JP. Selective anchoring of Pt NPs on covalent triazine-based frameworks via in situ derived bridging ligands for boosting photocatalytic hydrogen evolution. NANOSCALE 2024; 16:6010-6016. [PMID: 38404219 DOI: 10.1039/d4nr00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The efficient and stable production of hydrogen (H2) through Pt-containing photocatalysts remains a great challenge. Herein, we develop an effective strategy to selectively and uniformly anchor Pt NPs (∼1.2 nm) on a covalent triazine-based framework photocatalyst via in situ derived bridging ligands. Compared to Pt/CTF-1, the obtained Pt/AT-CTF-1 exhibits a considerable photocatalytic H2 evolution rate of 562.9 μmol g-1 h-1 under visible light irradiation. Additionally, the strong interaction between the Pt NPs and in situ derived bridging ligands provides remarkable stability to Pt/AT-CTF-1. Experimental investigations and photo/chemical characterization reveal the synergy of the in situ derived bridging ligands in Pt/AT-CTF-1, which can selectively anchor the Pt NPs with homogeneous sizes and efficiently improve the transmission of charge carriers. This work provides a new perspective toward stabilizing ultrasmall nanoclusters and facilitating electron transfer in photocatalytic H2 evolution materials.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Xiang Li
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Jiangxi Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-environmental Sciences and Planning, Nanchang 330063, P. R. China
| | - Dengke Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ying Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qian Fu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Dai-She Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
| | - Xiao-Zhen Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
| | - Jian-Ping Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment Nanchang University, Nanchang 330031, P. R. China.
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, P. R. China
| |
Collapse
|
5
|
He W, Zhou J, Xu W, Li C, Li J, Wang N. Regulating the Content of Donor Unit in Donor-Acceptor Covalent Triazine Frameworks for Promoting Photocatalytic H 2 Production. CHEMSUSCHEM 2024; 17:e202301175. [PMID: 37724486 DOI: 10.1002/cssc.202301175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/20/2023]
Abstract
Using their own triazine groups as natural receptors, the introduction of various donor units to construct donor-receptor configuration in covalent triazine frameworks (CTFs) has been shown to be an effective strategy to improve photocatalytic activity. In this work, the effect of donor unit content (D-content) on the photoelectric properties and photocatalytic activity of CTFs was thoroughly investigated. Four analogous CTFs with different D-content have been rationally designed and synthesized, in which the bithiophene (Btp) as the donor unit and triazine as the acceptor unit. And CTF-Btp with the highest D-content showed the best photocatalytic activity. The experimental and theoretical results indicated this improvement is attributed to stronger visible light absorption capacity and higher photoinduced charge carrier separation efficiency. This study elucidates the relationship between the structural features of CTFs with varying D-content and their photocatalytic activity, offering a promising strategy for developing efficient photocatalysts.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jing Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Chengbo Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
6
|
Azbell TJ, Pitt TA, Bollmeyer MM, Cong C, Lancaster KM, Milner PJ. Ionothermal Synthesis of Metal-Organic Frameworks Using Low-Melting Metal Salt Precursors. Angew Chem Int Ed Engl 2023; 62:e202218252. [PMID: 36811601 PMCID: PMC10079605 DOI: 10.1002/anie.202218252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with myriad potential applications in chemical separations, catalysis, and drug delivery. A major barrier to the application of MOFs is their poor scalability, as most frameworks are prepared under highly dilute solvothermal conditions using toxic organic solvents. Herein, we demonstrate that combining a range of linkers with low-melting metal halide (hydrate) salts leads directly to high-quality MOFs without added solvent. Frameworks prepared under these ionothermal conditions possess porosities comparable to those prepared under traditional solvothermal conditions. In addition, we report the ionothermal syntheses of two frameworks that cannot be prepared directly under solvothermal conditions. Overall, the user-friendly method reported herein should be broadly applicable to the discovery and synthesis of stable metal-organic materials.
Collapse
Affiliation(s)
- Tyler J Azbell
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Tristan A Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Melissa M Bollmeyer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Christina Cong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
- Current address: Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
7
|
Sun R, Tan B. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry 2023; 29:e202203077. [PMID: 36504463 DOI: 10.1002/chem.202203077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Covalent Triazine Frameworks (CTFs) have received great attention from academia owing to their unique structure characteristics such as nitrogen-rich structure, chemical stability, fully conjugated skeleton and high surface area; all these unique properties make CTFs attractive for widespread applications, especially for photocatalytic applications. In this review, we aim to provide recent advances in the CTFs preparation, and mainly focus on their photocatalytic applications. This review provides a comprehensive and systematic overview of the CTFs' synthetic methods, crystallinity lifting strategies, and their applications for photocatalytic water splitting. Firstly, a brief background including the photocatalytic water splitting and crystallinity are provided. Then, synthetic methods related to CTFs and the strategies for enhancing the crystallinity are summarized and compared. After that, the general photocatalytic mechanism and the strategies to improve the photocatalytic performance of CTFs are discussed. Finally, the perspectives and challenges of fabricating high crystalline CTFs and designing CTFs with excellent photocatalytic performance are discussed, inspiring the development of CTF materials in photocatalytic applications.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
8
|
Wang T, Gaugler JA, Li M, Thapaliya BP, Fan J, Qiu L, Moitra D, Kobayashi T, Popovs I, Yang Z, Dai S. Construction of Fluorine- and Piperazine-Engineered Covalent Triazine Frameworks Towards Enhanced Dual-Ion Positive Electrode Performance. CHEMSUSCHEM 2023; 16:e202201219. [PMID: 35996839 DOI: 10.1002/cssc.202201219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Organic positive electrodes featuring lightweight and tunable energy storage modes by molecular structure engineering have promising application prospects in dual-ion batteries. Herein, a series of highly porous covalent triazine frameworks (CTFs) were synthesized under ionothermal conditions using fluorinated aromatic nitrile monomers containing a piperazine ring. Fluorinated monomers can result in more defects in CTFs, leading to a higher surface area up to 2515 m2 g-1 and a higher N content of 11.34 wt % compared to the products from the non-fluorinated monomer. The high surface area and abundant redox sites of these CTFs afforded high specific capacities (up to 279 mAh g-1 at 0.1 A g-1 ), excellent rate performance (89 mAh g-1 at 5 A g-1 ), and durable cycling performance (92.3 % retention rate after 500 cycles at 2.0 A g-1 ) as dual-ion positive electrodes.
Collapse
Affiliation(s)
- Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James Anthony Gaugler
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| | - Meijia Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Juntian Fan
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| | - Liqi Qiu
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| | - Debabrata Moitra
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| | - Takeshi Kobayashi
- U.S. DoE Ames National Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemistry, Institute for Advanced Materials & Manufacturing, The University of Tennessee, Knoxville, TN 37916, USA
| |
Collapse
|
9
|
Iemhoff A, Vennewald M, Palkovits R. Single-Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212015. [PMID: 36108176 PMCID: PMC10108136 DOI: 10.1002/anie.202212015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
Heterogeneous single-site and single-atom catalysts potentially enable combining the high catalytic activity and selectivity of molecular catalysts with the easy continuous operation and recycling of solid catalysts. In recent years, covalent triazine frameworks (CTFs) found increasing attention as support materials for particulate and isolated metal species. Bearing a high fraction of nitrogen sites, they allow coordinating molecular metal species and stabilizing particulate metal species, respectively. Dependent on synthesis method and pretreatment of CTFs, materials resembling well-defined highly crosslinked polymers or materials comparable to structurally ill-defined nitrogen-containing carbons result. Accordingly, CTFs serve as model systems elucidating the interaction of single-site, single-atom and particulate metal species with such supports. Factors influencing the transition between molecular and particulate systems are discussed to allow deriving tailored catalyst systems.
Collapse
Affiliation(s)
- Andree Iemhoff
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maurice Vennewald
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.,Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Tuci G, Pugliesi M, Rossin A, Pham‐Huu C, Berretti E, Giambastiani G. Design of a Novel Naphtiridine‐based Covalent Triazine Framework for Carbon Dioxide Capture and Storage Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202203560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giulia Tuci
- Institute of Chemistry of OrganoMetallic Compounds ICCOM-CNR and Consorzio INSTM Via Madonna del Piano, 10 50019 Sesto F.no Florence Italy
| | - Matteo Pugliesi
- Institute of Chemistry of OrganoMetallic Compounds ICCOM-CNR and Consorzio INSTM Via Madonna del Piano, 10 50019 Sesto F.no Florence Italy
| | - Andrea Rossin
- Institute of Chemistry of OrganoMetallic Compounds ICCOM-CNR and Consorzio INSTM Via Madonna del Piano, 10 50019 Sesto F.no Florence Italy
| | - Cuong Pham‐Huu
- Institute of Chemistry and Processes for Energy Environment and Health (ICPEES) ECPM, UMR 7515 of the CNRS and University of Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Enrico Berretti
- Institute of Chemistry of OrganoMetallic Compounds ICCOM-CNR and Consorzio INSTM Via Madonna del Piano, 10 50019 Sesto F.no Florence Italy
| | - Giuliano Giambastiani
- Institute of Chemistry of OrganoMetallic Compounds ICCOM-CNR and Consorzio INSTM Via Madonna del Piano, 10 50019 Sesto F.no Florence Italy
- Institute of Chemistry and Processes for Energy Environment and Health (ICPEES) ECPM, UMR 7515 of the CNRS and University of Strasbourg 25 rue Becquerel 67087 Strasbourg Cedex 02 France
| |
Collapse
|
11
|
Ma S, Deng T, Li Z, Zhang Z, Jia J, Wu G, Xia H, Yang S, Liu X. Photocatalytic Hydrogen Production on a sp
2
‐Carbon‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202208919. [DOI: 10.1002/anie.202208919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Si Ma
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Tianqi Deng
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P.R. China
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Ziping Li
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Zhenwei Zhang
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Ji Jia
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Gang Wu
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Technology Jilin University Changchun 130012 P.R. China
| | - Shuo‐Wang Yang
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632
| | - Xiaoming Liu
- College of Chemistry Jilin University Changchun 130012 P.R. China
| |
Collapse
|
12
|
Photocatalytic Hydrogen Production on a sp2‐Carbon‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Xu S, Liao Z, Dianat A, Park S, Addicoat MA, Fu Y, Pastoetter DL, Fabozzi FG, Liu Y, Cuniberti G, Richter M, Hecht S, Feng X. Combination of Knoevenagel Polycondensation and Water-Assisted Dynamic Michael-Addition-Elimination for the Synthesis of Vinylene-Linked 2D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202202492. [PMID: 35253336 PMCID: PMC9401016 DOI: 10.1002/anie.202202492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 12/16/2022]
Abstract
Vinylene-linked two-dimensional conjugated covalent organic frameworks (V-2D-COFs), belonging to the class of two-dimensional conjugated polymers, have attracted increasing attention due to their extended π-conjugation over the 2D backbones associated with high chemical stability. The Knoevenagel polycondensation has been demonstrated as a robust synthetic method to provide cyano (CN)-substituted V-2D-COFs with unique optoelectronic, magnetic, and redox properties. Despite the successful synthesis, it remains elusive for the relevant polymerization mechanism, which leads to relatively low crystallinity and poor reproducibility. In this work, we demonstrate the novel synthesis of CN-substituted V-2D-COFs via the combination of Knoevenagel polycondensation and water-assisted dynamic Michael-addition-elimination, abbreviated as KMAE polymerization. The existence of C=C bond exchange between two diphenylacrylonitriles (M1 and M6) is firstly confirmed via in situ high-temperature NMR spectroscopy study of model reactions. Notably, the intermediate M4 synthesized via Michael-addition can proceed the Michael-elimination quantitatively, leading to an efficient C=C bond exchange, unambiguously confirming the dynamic nature of Michael-addition-elimination. Furthermore, the addition of water can significantly promote the reaction rate of Michael-addition-elimination for highly efficient C=C bond exchange within 5 mins. As a result, the KMAE polymerization provides a highly efficient strategy for the synthesis of CN-substituted V-2D-COFs with high crystallinity, as demonstrated by four examples of V-2D-COF-TFPB-PDAN, V-2D-COF-TFPT-PDAN, V-2D-COF-TFPB-BDAN, and V-2D-COF-HATN-BDAN, based on the simulated and experimental powder X-ray diffraction (PXRD) patterns as well as N2 -adsorption-desorption measurements. Moreover, high-resolution transmission electron microscopy (HR-TEM) analysis shows crystalline domain sizes ranging from 20 to 100 nm for the newly synthesized V-2D-COFs.
Collapse
Affiliation(s)
- Shunqi Xu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS)01109DresdenGermany
| | - Arezoo Dianat
- Chair of Material Science and NanotechnologyFaculty of Mechanical Science and EngineeringTechnische Universität DresdenHallwachstraße 301069DresdenGermany
| | - Sang‐Wook Park
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Leibniz-Institute for Polymer Research Dresden e.V. (IPF)01069DresdenGermany
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton LaneNottinghamNG11 8NSUK
| | - Yubin Fu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Dominik L. Pastoetter
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Filippo Giovanni Fabozzi
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
| | - Yannan Liu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Gianaurelio Cuniberti
- Chair of Material Science and NanotechnologyFaculty of Mechanical Science and EngineeringTechnische Universität DresdenHallwachstraße 301069DresdenGermany
| | - Marcus Richter
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
| | - Xinliang Feng
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| |
Collapse
|
14
|
Lan ZA, Wu M, Fang Z, Zhang Y, Chen X, Zhang G, Wang X. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl 2 Eutectic Salt for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202201482. [PMID: 35218273 DOI: 10.1002/anie.202201482] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Covalent triazine-based frameworks (CTFs) are typically produced by the salt-melt polycondensation of aromatic nitriles in the presence of ZnCl2 . In this reaction, molten ZnCl2 salt acts as both a solvent and Lewis acid catalyst. However, when cyclotrimerization takes place at temperatures above 300 °C, undesired carbonization occurs. In this study, an ionothermal synthesis method for CTF-based photocatalysts was developed using a ternary NaCl-KCl-ZnCl2 eutectic salt (ES) mixture with a melting point of approximately 200 °C. This temperature is lower than the melting point of pure ZnCl2 (318 °C), thus providing milder salt-melt conditions. These conditions facilitated the polycondensation process, while avoiding carbonization of the polymeric backbone. The resulting CTF-ES200 exhibited enhanced optical and electronic properties, and displayed remarkable photocatalytic performance in the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
15
|
Sun R, Wang X, Wang X, Tan B. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022; 61:e202117668. [PMID: 35038216 DOI: 10.1002/anie.202117668] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/09/2022]
Abstract
The growth of crystalline covalent triazine frameworks (CTFs) is still considered as a great challenge due to the less reversible covalent bonds of triazine linkages. The research studies of crystalline CTFs to date have been limited to two-dimensional (2D) structures, and the three-dimensional (3D) crystalline CTFs have never been reported before. Herein we report the design and synthesis of two 3D crystalline CTFs, termed 3D CTF-TPM and 3D CTF-TPA through a reversible/irreversible polycondensation approach. The targeted 3D CTFs adopt ctn topology, and show moderate crystallinity, relatively large surface area (ca. 2000 m2 g-1 ), and high CO2 uptake capacity (23.61 wt.%). Moreover, these 3D CTFs exhibit ultrastability in the presence of boiling water, strong acid (1 M HCl) and strong base (1 M NaOH). This contribution represents the first report of 3D crystalline CTFs, which not only extends their structural diversity but also offers a synthetic strategy and structural basis for expanding practical applications of CTF materials.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xuepeng Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
16
|
Iemhoff A, Vennewald M, Artz J, Mebrahtu C, Meledin A, Weirich TE, Hartmann H, Besmehn A, Aramini M, Venturini F, Mosselmans F, Held G, Arrigo R, Palkovits R. On the stability of isolated iridium sites in N‐rich frameworks against agglomeration under reducing conditions. ChemCatChem 2022. [DOI: 10.1002/cctc.202200179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andree Iemhoff
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen ITMC 52074 Aachen GERMANY
| | - Maurice Vennewald
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen ITMC 52074 Aachen GERMANY
| | - Jens Artz
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen ITMC 52074 Aachen GERMANY
| | - Chalachew Mebrahtu
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen ITMC 52074 Aachen GERMANY
| | - Alexander Meledin
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen GFE GERMANY
| | - Thomas E. Weirich
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen GFE GERMANY
| | - Heinrich Hartmann
- Forschungszentrum Jülich GmbH: Forschungszentrum Julich GmbH ZEA-3 GERMANY
| | - Astrid Besmehn
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH ZEA-3 GERMANY
| | - Matteo Aramini
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Federica Venturini
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Fred Mosselmans
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Georg Held
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Rosa Arrigo
- Diamond Light Source Ltd Harwell Science and Innovation Campus UNITED KINGDOM
| | - Regina Palkovits
- RWTH Aachen University Institut für Technische und Makromolekulare Chemie Worringerweg 1 52074 Aachen GERMANY
| |
Collapse
|
17
|
Xie J, Fang Z, Wang H. Modification of Covalent Triazine-Based Frameworks for Photocatalytic Hydrogen Generation. Polymers (Basel) 2022; 14:1363. [PMID: 35406237 PMCID: PMC9003054 DOI: 10.3390/polym14071363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
The conversion of solar energy and water to hydrogen via semiconductor photocatalysts is one of the efficient strategies to mitigate the energy and environmental crisis. Conjugated polymeric photocatalysts have advantages over their inorganic counterparts. Their molecular structures, band structures, and electronic properties are easily tunable through molecular engineering to extend their spectral response ranges, improve their quantum efficiencies, and enhance their hydrogen evolution rates. In particular, covalent triazine-based frameworks (CTFs) present a strong potential for solar-driven hydrogen generation due to their large continuous π-conjugated structure, high thermal and chemical stability, and efficient charge transfer and separation capability. Herein, synthesis strategies, functional optimization, and applications in the photocatalytic hydrogen evolution of CTFs since the first investigation are reviewed. Finally, the challenges of hydrogen generation for CTFs are summarized, and the direction of material modifications is proposed.
Collapse
Affiliation(s)
- Jijia Xie
- Sinopec Beijing Research Institute of Chemical Industry, Beijing 100029, China
| | - Zhiping Fang
- Department of Science & Technology R & D, Sinopec Group, Beijing 100728, China;
| | - Hui Wang
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| |
Collapse
|
18
|
Xu S, Liao Z, Dianat A, Park S, Addicoat MA, Fu Y, Pastoetter DL, Fabozzi FG, Liu Y, Cuniberti G, Richter M, Hecht S, Feng X. Combination of Knoevenagel Polycondensation and Water‐Assisted Dynamic Michael‐Addition‐Elimination for the Synthesis of Vinylene‐Linked 2D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shunqi Xu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) 01109 Dresden Germany
| | - Arezoo Dianat
- Chair of Material Science and Nanotechnology Faculty of Mechanical Science and Engineering Technische Universität Dresden Hallwachstraße 3 01069 Dresden Germany
| | - Sang‐Wook Park
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Leibniz-Institute for Polymer Research Dresden e.V. (IPF) 01069 Dresden Germany
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Yubin Fu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Dominik L. Pastoetter
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Filippo Giovanni Fabozzi
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular Chemistry RWTH Aachen University 52074 Aachen Germany
| | - Yannan Liu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Gianaurelio Cuniberti
- Chair of Material Science and Nanotechnology Faculty of Mechanical Science and Engineering Technische Universität Dresden Hallwachstraße 3 01069 Dresden Germany
| | - Marcus Richter
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular Chemistry RWTH Aachen University 52074 Aachen Germany
| | - Xinliang Feng
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany
| |
Collapse
|
19
|
Lan ZA, Wu M, Fang Z, Zhang Y, Chen X, Zhang G, Wang X. Ionothermal Synthesis of Covalent Triazine Frameworks in NaCl‐KCl‐ZnCl2 Eutectic Salt for Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-An Lan
- Fuzhou University college of chemistry CHINA
| | - Meng Wu
- Fuzhou University college of chemistry CHINA
| | | | | | - Xiong Chen
- Fuzhou University college of chemistry CHINA
| | | | - Xinchen Wang
- Fuzhou University Chemistry 523 Gongye Rd, Gulou 350000 Fuzhou CHINA
| |
Collapse
|
20
|
Sun T, Liang Y, Xu Y. Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tian Sun
- School of Engineering Westlake University Hangzhou 310024 Zhejiang Province China
| | - Yan Liang
- School of Engineering Westlake University Hangzhou 310024 Zhejiang Province China
- College of Chemistry and Chemical Engineering Northwest Normal University Gansu Province China
| | - Yuxi Xu
- School of Engineering Westlake University Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
21
|
Sun R, Wang X, Wang X, Tan B. Three‐Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruixue Sun
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Xiaoyan Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Xuepeng Wang
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Bien Tan
- Huazhong University of Science and Technology School of Chemisry & Chemical Engineering 1037 Luoyu Road 430074 Wuhan CHINA
| |
Collapse
|
22
|
Wang X, Wang N, Ni H, An QF. In situ growth of covalent triazine frameworks membrane on alumina substrate for dye/salt separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Suo X, Zhang F, Yang Z, Chen H, Wang T, Wang Z, Kobayashi T, Do-Thanh CL, Maltsev D, Liu Z, Dai S. Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low-Temperature Ionothermal Approach Towards Enhanced CO 2 Electroreduction. Angew Chem Int Ed Engl 2021; 60:25688-25694. [PMID: 34582075 DOI: 10.1002/anie.202109342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 02/06/2023]
Abstract
Perfluorinated covalent triazine frameworks (F-CTFs) have shown unique features and attractive performance in separation and catalysis. However, state-of-the-art F-CTFs synthesized via the ZnCl2 -promoted procedure have quite low fluorine contents due to C-F bond cleavage induced by chloride (a Lewis base) and the harsh conditions deployed (400-700 °C). Fabricating F-CTFs with high fluorine contents (>30 wt %) remains challenging. Herein, we present a low-temperature ionothermal approach (275 °C) to prepare F-CTFs, which is achieved via polymerization of tetrafluoroterephthalonitrile (TFPN) over the Lewis superacids, e.g., zinc triflimide [Zn(NTf2 )2 ] without side reactions. With low catalyst loading (equimolar), F-CTFs are afforded with high fluorine content (31 wt %), surface area up to 367 m2 g-1 , and micropores around 1.1 nm. The highly hydrophobic F-CTF-1 exhibits good capability to boost electroreduction of CO2 to CO, with faradaic efficiency of 95.7 % at -0.8 V and high current density (-141 mA cm-2 ) surpassing most of the metal-free electrocatalysts.
Collapse
Affiliation(s)
- Xian Suo
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hao Chen
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zongyu Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Takeshi Kobayashi
- U.S. DoE Ames Laboratory, Iowa State University, Ames, IA, 50011, USA
| | - Chi-Linh Do-Thanh
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Dmitry Maltsev
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
24
|
Wang C, Zhang H, Luo W, Sun T, Xu Y. Ultrathin Crystalline Covalent-Triazine-Framework Nanosheets with Electron Donor Groups for Synergistically Enhanced Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2021; 60:25381-25390. [PMID: 34549503 DOI: 10.1002/anie.202109851] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/06/2022]
Abstract
Ultrathin nanosheets have great potential for photocatalytic applications, however, suffer from enlarged band gap and narrowed visible-light-responsive range due to the quantum confinement effect. Herein, we report a novel redox strategy for efficient preparation of ultrathin crystalline amide-functionalized covalent-triazine-framework nanosheets (CTF NSs) with enhanced visible light absorption. The CTF NSs exhibited photocatalytic hydrogen (512.3 μmol h-1 ) and oxygen (12.37 μmol h-1 ) evolution rates much higher than that of pristine bulk CTF. Photocatalytic overall water splitting could be achieved with efficient stoichiometric H2 (5.13 μmol h-1 ) and O2 (2.53 μmol h-1 ) evolution rates under visible light irradiation. Experimental and theoretical analysis revealed that introduction of amide groups as electron donor optimized the band structure and improve its visible-light absorption, hydrophilicity and carrier separation efficiency, thus resulting in the enhanced photocatalytic performance. The well-dispersed CTF NSs could be easily cast onto a support as a thin film device and demonstrate excellent photocatalytic activity (25.7 mmol h-1 m-2 for hydrogen evolution).
Collapse
Affiliation(s)
- Congxu Wang
- School of Engineering, Westlake University, Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Hualei Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Wenjia Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Tian Sun
- School of Engineering, Westlake University, Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
25
|
Ruidas S, Mohanty B, Bhanja P, Erakulan ES, Thapa R, Das P, Chowdhury A, Mandal SK, Jena BK, Bhaumik A. Metal-Free Triazine-Based 2D Covalent Organic Framework for Efficient H 2 Evolution by Electrochemical Water Splitting. CHEMSUSCHEM 2021; 14:5057-5064. [PMID: 34532998 DOI: 10.1002/cssc.202101663] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Indexed: 05/27/2023]
Abstract
Hydrogen evolution reaction (HER) by electrochemical water splitting is one of the most active areas of energy research, yet the benchmark electrocatalysts used for this reaction are based on expensive noble metals. This is a major bottleneck for their large-scale operation. Thus, development of efficient metal-free electrocatalysts is of paramount importance for sustainable and economical production of the renewable fuel hydrogen by water splitting. Covalent organic frameworks (COFs) show much promise for this application by virtue of their architectural stability, nanoporosity, abundant active sites located periodically throughout the framework, and high electronic conductivity due to extended π-delocalization. This study concerns a new COF material, C6 -TRZ-TFP, which is synthesized by solvothermal polycondensation of 2-hydroxybenzene-1,3,5-tricarbaldehyde (TFP) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tris[(1,1'-biphenyl)-4-amine]. C6 -TRZ-TFP displayed excellent HER activity in electrochemical water splitting, with a very low overpotential of 200 mV and specific activity of 0.2831 mA cm-2 together with high retention of catalytic activity after a long duration of electrocatalysis in 0.5 m aqueous H2 SO4 . Density functional theory calculations suggest that the electron-deficient carbon sites near the π electron-donating nitrogen atoms are more active towards HER than those near the electron-withdrawing nitrogen and oxygen atoms.
Collapse
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Bishnupad Mohanty
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Piyali Bhanja
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - E S Erakulan
- Department of Physics, SRM University, Amaravati, 522 502, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University, Amaravati, 522 502, Andhra Pradesh, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manuali PO, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manuali PO, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Bikash Kumar Jena
- Material Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
26
|
Sun T, Liang Y, Xu Y. Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angew Chem Int Ed Engl 2021; 61:e202113926. [PMID: 34741378 DOI: 10.1002/anie.202113926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/06/2022]
Abstract
The rapid synthesis of crystalline covalent triazine frameworks (CTFs) and exploration of the polymerization mechanism are highly desired for the research of crystalline porous polymers, but have not yet been reported. Herein, we demonstrate a scalable microwave-assisted synthetic strategy to successfully prepare a series of highly crystalline and semiconducting CTFs within 20 minutes for the first time. By in situ imaging and time-dependent characterization, we proposed an ordered two-dimensional (2D) polymerization mechanism for crystalline CTFs, in which the monomers rapidly polymerize into periodic 2D molecular sheets within 10 s and then grow into more ordered framework structures. Photocatalytic study of CTF with different crystallinity revealed that large crystalline domain could significantly improve the photocatalytic performance. Single-layer and few-layer crystalline 2D triazine polymer nanosheets could be obtained through simple ball-milling exfoliation of the bulk layered CTFs and exhibit nearly fivefold improved photocatalytic hydrogen evolution rate up to 7971 μmol g-1 h-1 .
Collapse
Affiliation(s)
- Tian Sun
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Yan Liang
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China.,College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
27
|
Suo X, Zhang F, Yang Z, Chen H, Wang T, Wang Z, Kobayashi T, Do‐Thanh C, Maltsev D, Liu Z, Dai S. Highly Perfluorinated Covalent Triazine Frameworks Derived from a Low‐Temperature Ionothermal Approach Towards Enhanced CO
2
Electroreduction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xian Suo
- Department of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid, Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhenzhen Yang
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Hao Chen
- Department of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA
| | - Tao Wang
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zongyu Wang
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | | | - Chi‐Linh Do‐Thanh
- Department of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA
| | - Dmitry Maltsev
- Department of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid, Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Sheng Dai
- Department of Chemistry Institute for Advanced Materials and Manufacturing University of Tennessee Knoxville TN 37996 USA
- Chemical Sciences Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
28
|
Wang C, Zhang H, Luo W, Sun T, Xu Y. Ultrathin Crystalline Covalent‐Triazine‐Framework Nanosheets with Electron Donor Groups for Synergistically Enhanced Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Congxu Wang
- School of Engineering Westlake University Institute of Advanced Technology Westlake Institute for Advanced Study Hangzhou 310024 Zhejiang Province China
| | - Hualei Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Wenjia Luo
- School of Chemistry and Chemical Engineering Southwest Petroleum University Chengdu 610500 China
| | - Tian Sun
- School of Engineering Westlake University Institute of Advanced Technology Westlake Institute for Advanced Study Hangzhou 310024 Zhejiang Province China
| | - Yuxi Xu
- School of Engineering Westlake University Institute of Advanced Technology Westlake Institute for Advanced Study Hangzhou 310024 Zhejiang Province China
| |
Collapse
|
29
|
Du J, Ouyang H, Tan B. Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chem Asian J 2021; 16:3833-3850. [PMID: 34605613 DOI: 10.1002/asia.202100991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/01/2021] [Indexed: 01/07/2023]
Abstract
To overcome the challenges of global warming and environmental pollution, it is necessary to reduce the concentration of carbon dioxide (CO2 ) in the atmosphere, which is mainly accumulated in the air through the burning of fossil fuels. Therefore, the development of environmentally friendly strategies to capture carbon dioxide and convert it into value-added products offers a promising way forward for reducing carbon dioxide concentration in the atmosphere. In this context, POPs (porous organic polymers) have shown great potential as CO2 selective adsorbents due to their high specific surface area, chemical stability, nanoscale porosity and structural diversity, as well as POPs based heterogeneous catalysts for CO2 conversion. This review provides a concise account of preparation methods of various POPs, challenges and current development trends of POPs in photocatalytic CO2 reduction, electrocatalytic CO2 reduction and chemical CO2 conversion.
Collapse
Affiliation(s)
- Jing Du
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Huang Ouyang
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| | - Bien Tan
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037#, Hongshan District, Wuhan, 430074, P. R. China
| |
Collapse
|
30
|
Chen Y, Xia L, Lu Z, Li G, Hu Y. In situ fabrication of chiral covalent triazine frameworks membranes for enantiomer separation. J Chromatogr A 2021; 1654:462475. [PMID: 34438304 DOI: 10.1016/j.chroma.2021.462475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Rapid and high-flux enantiomer separation is significant for drug development. Membrane separation technology provides promising approaches for enantiomer separations. Porous membrane with good selectivity and high permeability is an ideal choice for enantiomer separations. Herein, we demonstrate the preparation of a novel two-dimensional chiral covalent triazine frameworks (CCTF) membrane by "in situ growth" method. Inheriting the strong chirality and specific interactions from CCTF, the CCTF membranes exhibited good enantioselectivity for drug intermediates and drug, including (R)/(S)-1-phenylethanol, (R)/(S)-1,1'-binaphthol and (R)/(S)-ibuprofen. Under optimal separation conditions, the enantiomeric excess value (e.e %) was above 21.7 % for (R)/(S)-1-phenylethanol, 12.0% for (R)/(S)-1,1'-binaphthol and 9.7 % for (R)/(S)-ibuprofen. The mechanism of the CCTF recognizing enantiomers were simulated by quantum mechanical calculations. In addition, the mechanism was also proved by the separation of enantiomers using this CCTF-modified silica column in liquid chromatography. The CCTF membrane may bring about the potentially application for large-scale production of chiral compounds. Meanwhile, this work provides a theoretical guidance for the application of CCOFs in enantiomer separation.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zicheng Lu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
31
|
Liu C, Wang YC, Yang Q, Li XY, Yi F, Liu KW, Cao HM, Wang CJ, Yan HJ. Graphene Oxide-Assisted Covalent Triazine Framework for Boosting Photocatalytic H 2 Evolution. Chemistry 2021; 27:13059-13066. [PMID: 34190368 DOI: 10.1002/chem.202101956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Covalent triazine frameworks (CTFs) with two-dimensional structures have exhibited promising visible-light-induced H2 evolution performance. However, it is still a challenge to improve their activity. Herein, we report π-conjugation-linked CTF-1/GO for boosting photocatalytic H2 evolution. The CTF-1/GO hybrid material was obtained by a facile low-temperature condensation of 1,4-dicyanobenzene in the presence of GO. The results of photocatalytic H2 evolution indicate that the optimum hybrid, CTF-1/GO-3.0, exhibited an H2 evolution rate of 2262.4 μmol ⋅ g-1 ⋅ h-1 under visible light irradiation, which was 9 times that of pure CTF-1. The enhanced photocatalytic performance could be attributed to the fact that GO in CTF-1/GO hybrids not only acts as an electron collector and transporter like a "bridge" to facilitate the separation and transfer of photogenerated charges but also shortens the electron migration path due to its thin sheet layer uniformly distribution over CTF-1. This work could help future development of novel conjugated CTF-based composite materials as high-efficiency photocatalyst for photocatalysis.
Collapse
Affiliation(s)
- Cheng Liu
- College of Chemistry, Sichuan University, 610064, Chengdu, China.,Department Chemistry and Chemical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yongchao C Wang
- Department Chemistry and Chemical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Qing Yang
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Xinyu Y Li
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Fangli Yi
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Kewei W Liu
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Hongmei M Cao
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Cuijuan J Wang
- Department Chemistry and Chemical Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Hongjian J Yan
- College of Chemistry, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
32
|
Singh M, Jamra R, Mehra S, Rattan S, Singh V. Potassium
Tert
‐Butoxide‐Promoted Synthesis of Fluorescent β‐Carboline Tethered 1,3,5‐Triazines and Assessment of Their Luminescent Properties. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manpreet Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
| | - Rahul Jamra
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
- Department of Chemistry Central University of Punjab Bathinda Punjab 151401 India
| | - Saloni Mehra
- Amity Institute of Applied Sciences Amity University Noida 201313 India
| | - Sunita Rattan
- Amity Institute of Applied Sciences Amity University Noida 201313 India
| | - Virender Singh
- Department of Chemistry Dr B. R. Ambedkar National Institute of Technology (NIT) Jalandhar Punjab 144011 India
- Department of Chemistry Central University of Punjab Bathinda Punjab 151401 India
| |
Collapse
|
33
|
Deng Y, Wang Y, Chen Y, Zhang Z. Strategies for Improving the Catalytic Performance of 2D Covalent Organic Frameworks for Hydrogen Evolution and Oxygen Evolution Reactions. Chem Asian J 2021; 16:1851-1863. [PMID: 34002483 DOI: 10.1002/asia.202100357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/12/2021] [Indexed: 11/11/2022]
Abstract
Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) have been deemed as clean and sustainable strategies to solve the energy crisis and environmental problems. Various catalysts have been developed to promote the process of HER and OER. Among them, two-dimensional covalent organic frameworks (2D COFs) have received great attention due to their diverse and designable structure. In this minireview, we mainly summarize the diverse linkages of 2D COFs and strategies for enhancing the catalytic performance of 2D COFs for HER and OER, such as introducing active building blocks, metal ions and tailored linkages. Furthermore, a brief outlook for the development directions of COFs in the field of HER and OER is provided, expecting to stimulate new opportunities in future research.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/ Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
34
|
Xu Z, Cui Y, Guo B, Li H, Li H. Boosting Visible‐Light‐Driven H
2
Evolution of Covalent Triazine Framework from Water by Modifying Ni(II) Pyrimidine‐2‐thiolate Cocatalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202001631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ze Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Yao Cui
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Bin Guo
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| | - Hai‐Yan Li
- Analysis and Testing Center Soochow University Soochow University 215123 Suzhou P.R. China
| | - Hong‐Xi Li
- College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P.R. China
| |
Collapse
|
35
|
Chen H, Yang Z, Do-Thanh CL, Dai S. What Fluorine Can Do in CO 2 Chemistry: Applications from Homogeneous to Heterogeneous Systems. CHEMSUSCHEM 2020; 13:6182-6200. [PMID: 32726509 DOI: 10.1002/cssc.202001638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2020] [Indexed: 06/11/2023]
Abstract
CO2 chemistry including capture and fixation has attracted great attention towards the aim of reducing the consumption of fossil fuels and CO2 accumulation in the atmosphere. "CO2 -philic" materials are required to achieve good performance owing to the intrinsic properties of the CO2 molecule, that is, thermodynamic stability and kinetic inertness. In this respect, fluorinated materials have been deployed in CO2 capture (physical and chemical pathway) or fixation (thermo- and electrocatalytic procedure) with good performances, including homogeneous (e. g., ionic liquids and small organic molecules) and heterogeneous counterparts (e. g., carbons, porous organic polymers, covalent triazine frameworks, metal-organic frameworks, and membranes). In this Minireview, these works are summarized and analyzed from the aspects of (1) the strategy used for fluorine introduction, (2) characterization of the targeted materials, (3) performance of the fluorinated systems in CO2 chemistry, and comparison with the nonfluorinated counterparts, (4) the role of fluorinated functionalities in the working procedure, and (5) the relationship between performance and structural/electronic properties of the materials. The systematic summary in this Minireview will open new opportunities in guiding the design of "CO2 -philic" materials and pave the way to stimulate further progress in this field.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, United States
| | - Zhenzhen Yang
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Chi-Linh Do-Thanh
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, United States
| | - Sheng Dai
- Department of Chemistry, Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| |
Collapse
|
36
|
Guo S, Yang P, Zhao Y, Yu X, Wu Y, Zhang H, Yu B, Han B, George MW, Liu Z. Direct Z-Scheme Heterojunction of SnS 2 /Sulfur-Bridged Covalent Triazine Frameworks for Visible-Light-Driven CO 2 Photoreduction. CHEMSUSCHEM 2020; 13:6278-6283. [PMID: 32291955 DOI: 10.1002/cssc.202000712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Solar-driven reduction of CO2 into renewable carbon forms is considered as an alternative approach to address global warming and the energy crisis but suffers from low efficiency of the photocatalysts. Herein, a direct Z-Scheme SnS2 /sulfur-bridged covalent triazine frameworks (S-CTFs) photocatalyst (denoted as SnS2 /S-CTFs) was developed, which could efficiently adsorb CO2 owing to the CO2 -philic feature of S-CTFs and promote separation of photoinduced electron-hole pairs. Under visible-light irradiation, SnS2 /S-CTFs exhibited excellent performance for CO2 photoreduction, yielding CO and CH4 with evolution rates of 123.6 and 43.4 μmol g-1 h-1 , respectively, much better than the most catalysts reported to date. This inorganic/organic hybrid with direct Z-Scheme structure for visible-light-driven CO2 photoreduction provides new insights for designing photocatalysts with high efficiency for solar-to-fuel conversion.
Collapse
Affiliation(s)
- Shien Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Peng Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xiaoxiao Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yunyan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hongye Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Bo Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101400, P.R. China
| | - Michael W George
- School of Chemistry, The University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo, 315100, P.R. China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101400, P.R. China
| |
Collapse
|
37
|
Shi G, Zhou J, Li Z, Sun Y, Kantorovich LN, Fang Q, Besenbacher F, Yu M. Graphene‐Like Covalent Organic Framework with a Wide Band Gap Synthesized On Surface via Stepwise Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guoqiang Shi
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junfeng Zhou
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Zhuo Li
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Ye Sun
- Condensed Matter Science and Technology Institute Harbin Institute of Technology Harbin 150001 China
| | - Lev N. Kantorovich
- Department of Physics King's College London The Strand London WC2R 2LS UK
| | - Qiang Fang
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
38
|
Shi G, Zhou J, Li Z, Sun Y, Kantorovich LN, Fang Q, Besenbacher F, Yu M. Graphene-Like Covalent Organic Framework with a Wide Band Gap Synthesized On Surface via Stepwise Reactions. Angew Chem Int Ed Engl 2020; 59:15958-15962. [PMID: 32516498 DOI: 10.1002/anie.202006176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 11/10/2022]
Abstract
Developing graphene-like two-dimensional materials naturally possessing a band gap has sparked enormous interest. Thanks to the inherent wide band gap and high mobility in the 2D plane, covalent organic frameworks containing triazine rings (t-COFs) hold great promise in this regard, whilst the synthesis of single-layer t-COFs remains highly challenging. Herein, we present the fabrication of a well-defined graphene-like t-COF on Au(111). Instead of single/multiple-step single-type reactions commonly applied for on-surface synthesis, distinct stepwise on-surface reactions, including alkynyl cyclotrimerization, C-O bond cleavage, and C-H bond activation, are triggered on demand, leading to product evolution in a controlled step-by-step manner. Aside from the precise control in sophisticated on-surface synthesis, this work proposes a single-atomic-layer organic semiconductor with a wide band gap of 3.41 eV.
Collapse
Affiliation(s)
- Guoqiang Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junfeng Zhou
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhuo Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ye Sun
- Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150001, China
| | - Lev N Kantorovich
- Department of Physics, King's College London, The Strand, London, WC2R 2LS, UK
| | - Qiang Fang
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Aarhus, 8000, Denmark
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
39
|
Hu Y, Huang W, Wang H, He Q, Zhou Y, Yang P, Li Y, Li Y. Metal-Free Photocatalytic Hydrogenation Using Covalent Triazine Polymers. Angew Chem Int Ed Engl 2020; 59:14378-14382. [PMID: 32485021 DOI: 10.1002/anie.202006618] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 11/10/2022]
Abstract
Photocatalytic hydrogenation of biomass-derived organic molecules transforms solar energy into high-energy-density chemical bonds. Reported herein is the preparation of a thiophene-containing covalent triazine polymer as a photocatalyst, with unique donor-acceptor units, for the metal-free photocatalytic hydrogenation of unsaturated organic molecules. Under visible-light illumination, the polymeric photocatalyst enables the transformation of maleic acid into succinic acid with a production rate of about 2 mmol g-1 h-1 , and furfural into furfuryl alcohol with a production rate of about 0.5 mmol g-1 h-1 . Great catalyst stability and recyclability are also measured. Given the structural diversity of polymeric photocatalysts and their readily tunable optical and electronic properties, metal-free photocatalytic hydrogenation represents a highly promising approach for solar energy conversion.
Collapse
Affiliation(s)
- Yongpan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Wei Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Hongshuai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qing He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yuan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ping Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
40
|
Hu Y, Huang W, Wang H, He Q, Zhou Y, Yang P, Li Y, Li Y. Metal‐Free Photocatalytic Hydrogenation Using Covalent Triazine Polymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongpan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Wei Huang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Hongshuai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Qing He
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Yuan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Ping Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| |
Collapse
|
41
|
Zhou W, Yang L, Zhou FY, Deng QW, Wang X, Zhai D, Ren GQ, Han KL, Deng WQ, Sun L. Salen-Based Conjugated Microporous Polymers for Efficient Oxygen Evolution Reaction. Chemistry 2020; 26:7720-7726. [PMID: 32281693 DOI: 10.1002/chem.202001039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 11/07/2022]
Abstract
Exploring high-performance electrocatalysts, especially non-noble metal electrocatalysts, for the oxygen evolution reaction (OER) is critical to energy storage and conversion. Herein, we report for the first time that conjugated microporous polymers (CMPs) incorporating salen can be used as OER electrocatalysts with outstanding performances. The best OER electrocatalyst (salen-CMP-Fe-3) exhibits a low Tafel slope of 63 mV dec-1 and an overpotential of 238 mV at 10 mA cm-2 . DFT and Grand Canonical Monte Carlo calculations confirmed that the significantly improved electrocatalytic properties can be attributed to the intrinsic catalytic activity of the salen moiety and the enrichment effect of the pore structures. This work demonstrates that salen-based conjugated polymers are a type of metal-coordinated porous polymer that show excellent catalyst performance.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Li Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fu-Yu Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qi-Wen Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Guo-Qing Ren
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Ke-Li Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
42
|
Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Strong‐Base‐Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020; 59:6007-6014. [DOI: 10.1002/anie.201914424] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Siquan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Liping Guo
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| |
Collapse
|
43
|
Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Strong‐Base‐Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914424] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Siquan Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Guang Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Liping Guo
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| | - Shangbin Jin
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
| |
Collapse
|
44
|
Zhang J, Zheng T, Zhang J. I2
/K2
S2
O8
Mediated Direct Oxidative Annulation of Alkylazaarenes with Amidines for the Synthesis of Substituted 1,3,5-Triazines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Tingting Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Jidong Zhang
- School of Chemistry & Chemical Engineering; Ankang University; 725000 Ankang Shaanxi P. R. China
| |
Collapse
|
45
|
Chen T, Li W, Chen X, Guo Y, Hu W, Hu W, Liu YA, Yang H, Wen K. A Triazine‐Based Analogue of Graphyne: Scalable Synthesis and Applications in Photocatalytic Dye Degradation and Bacterial Inactivation. Chemistry 2020; 26:2269-2275. [DOI: 10.1002/chem.201905133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/08/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Tao Chen
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wen‐Qian Li
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiao‐Jia Chen
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
| | - Yun‐Zhe Guo
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei‐Bo Hu
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
| | - Wen‐Jing Hu
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
| | - Yahu A. Liu
- Medicinal ChemistryChemBridge Research Laboratories San Diego CA 92127 USA
| | - Hui Yang
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 P. R. China
| | - Ke Wen
- Shanghai Advanced Research InstituteChinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
46
|
Shu C, Zhao Y, Zhang C, Gao X, Ma W, Ren SB, Wang F, Chen Y, Zeng JH, Jiang JX. Bisulfone-Functionalized Organic Polymer Photocatalysts for High-Performance Hydrogen Evolution. CHEMSUSCHEM 2020; 13:369-375. [PMID: 31755236 DOI: 10.1002/cssc.201902797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Conjugated polymers show great potential in the application of photocatalysis, particularly for the photoreduction reaction of water to generate hydrogen. Molecular structure design is a key part for building a high-performance organic photocatalyst. Herein, two bisulfone-containing conjugated polymer photocatalysts were constructed with 1D or 3D polymer structures, and the effect of polymer geometry on photocatalytic activity was studied. It was found that the linear polymer PySEO-1 exhibited increased photocatalytic performance compared with the 3D polymer network PySEO-2 because the enhanced coplanarity of the polymeric chain in PySEO-1 promoted the photogenerated charge-carrier transmission along the 1D main chain. As a result, an attractive hydrogen generation rate of 9477 μmol h-1 g-1 was obtained with PySEO-1 under broadband light irradiation. PySEO-1 also exhibited a high external quantum efficiency of 4.1 % at an incident light wavelength of 400 nm, demonstrating that the bisulfone-containing polymers are attractive as organic photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Chang Shu
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Yongbo Zhao
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Xiaomin Gao
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Wenyan Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Shi-Bin Ren
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 317000, P. R. China
| | - Feng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430073, P. R. China
| | - Yu Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jing Hui Zeng
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P. R. China
| |
Collapse
|
47
|
Jayakumar J, Chou H. Recent Advances in Visible‐Light‐Driven Hydrogen Evolution from Water using Polymer Photocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.201901725] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jayachandran Jayakumar
- Department of Chemical EngineeringNational Tsing Hua University No. 101, Sec. 2, Kuang-Fu Road Hsinchu 30013 Taiwan
| | - Ho‐Hsiu Chou
- Department of Chemical EngineeringNational Tsing Hua University No. 101, Sec. 2, Kuang-Fu Road Hsinchu 30013 Taiwan
| |
Collapse
|
48
|
Jena HS, Krishnaraj C, Schmidt J, Leus K, Van Hecke K, Van Der Voort P. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO 2 Uptake and Metal-Free Heterogeneous Catalysis. Chemistry 2019; 26:1548-1557. [PMID: 31603596 DOI: 10.1002/chem.201903926] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/04/2019] [Indexed: 01/14/2023]
Abstract
Covalent triazine frameworks (CTFs) have provided a unique platform in functional material design for a wide range of applications. This work reports a series of new CTFs with two new heteroaromatic building blocks (pyrazole and isoxazole groups) through a building-block transformation approach aiming for carbon capture and storage (CCS) and metal-free catalysis. The CTFs were synthesized from their respective building blocks [(4,4'-(1H-pyrazole-3,5-diyl)dibenzonitrile (pyz) and 4,4'-(isoxazole-3,5-diyl)dibenzonitrile (isox))] under ionothermal conditions using ZnCl2 . Both of the building blocks were designed by an organic transformation of an acetylacetone containing dinitrile linker to pyrazole and isoxazole groups, respectively. Due to this organic transformation, (i) linker aromatization, (ii) higher surface areas and nitrogen contents, (iii) higher aromaticity, and (iv) higher surface basicity was achieved. Due to these enhanced properties, CTFs were explored for CO2 uptake and metal-free heterogeneous catalysis. Among all, the isox-CTF, synthesized at 400 °C, showed the highest CO2 uptake (4.92 mmol g-1 at 273 K and 2.98 mmol g-1 at 298 K at 1 bar). Remarkably, these CTFs showed excellent metal-free catalytic activity for the aerobic oxidation of benzylamine at mild reaction conditions. On studying the properties of the CTFs, it was observed that organic transformations and ligand aromatization of the materials are crucial factor to tune the important parameters that influence the CO2 uptake and the catalytic activity. Overall, this work highlights the substantial effect of designing new CTF materials by building-block organic transformations resulting in better properties for CCS applications and heterogeneous catalysis.
Collapse
Affiliation(s)
- Himanshu Sekhar Jena
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| | - Chidharth Krishnaraj
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| | - Johannes Schmidt
- Technische Universität Berlin, Institut für Chemie-Funktionsmaterialien, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Karen Leus
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281 (S3 B), 9000, Ghent, Belgium
| |
Collapse
|
49
|
Chen X, Geng K, Liu R, Tan KT, Gong Y, Li Z, Tao S, Jiang Q, Jiang D. Kovalente organische Gerüstverbindungen: chemische Ansätze für Designerstrukturen und integrierte Funktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904291] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinyi Chen
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Keyu Geng
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Ruoyang Liu
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Ke Tian Tan
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Yifan Gong
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Zhongping Li
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Shanshan Tao
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Qiuhong Jiang
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
| | - Donglin Jiang
- Department of ChemistryFaculty of ScienceNational University of Singapore 3 Science Drive 3 Singapur 117543 Singapur
- Joint School of National University of Singapore, and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 China
| |
Collapse
|
50
|
Chen X, Geng K, Liu R, Tan KT, Gong Y, Li Z, Tao S, Jiang Q, Jiang D. Covalent Organic Frameworks: Chemical Approaches to Designer Structures and Built-In Functions. Angew Chem Int Ed Engl 2019; 59:5050-5091. [PMID: 31144373 DOI: 10.1002/anie.201904291] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 12/31/2022]
Abstract
A new approach has been developed to design organic polymers using topology diagrams. This strategy enables covalent integration of organic units into ordered topologies and creates a new polymer form, that is, covalent organic frameworks. This is a breakthrough in chemistry because it sets a molecular platform for synthesizing polymers with predesignable primary and high-order structures, which has been a central aim for over a century but unattainable with traditional design principles. This new field has its own features that are distinct from conventional polymers. This Review summarizes the fundamentals as well as major progress by focusing on the chemistry used to design structures, including the principles, synthetic strategies, and control methods. We scrutinize built-in functions that are specific to the structures by revealing various interplays and mechanisms involved in the expression of function. We propose major fundamental issues to be addressed in chemistry as well as future directions from physics, materials, and application perspectives.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Keyu Geng
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ke Tian Tan
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yifan Gong
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhongping Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Qiuhong Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|