1
|
Iwasawa N, Ono K. 3D-Boronic Ester Architectures: Synthesis, Host-Guest Chemistry, Dynamic Behavior, and Supramolecular Catalysis. CHEM REC 2021; 22:e202100214. [PMID: 34596949 DOI: 10.1002/tcr.202100214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/09/2022]
Abstract
Boronic esters are known to be formed simply by mixing boronic acids and alcohols under neutral conditions, and the equilibrium is in favor of the boronic esters when 1,2- or 1,3-diols are employed as alcohols. By utilizing the dynamic nature of the boronic ester formation, our group successfully constructed unique boron-containing 3D structures, such as ring-shaped macrocycles, cages, and tubes, based on the boronic ester formation of various aromatic di-, tri-, or hexaboronic acids with an originally designed tetrol 1 containing two sets of fixed 1,2-diol units oriented on the same face of an indacene framework. Various functions of the obtained boronates were further pursued to disclose the characteristic features of this system. This personal account describes our self-assembled boronate system using tetrol 1 including synthesis, host-guest chemistry, kinetic connection, characteristic dynamic behaviors, and supramolecular catalysis.
Collapse
Affiliation(s)
- Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kosuke Ono
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
2
|
Tanaka D, Tsutsui Y, Konishi A, Nakaoka K, Nakajima H, Baba A, Chiba K, Yasuda M. Selective Activation of Aromatic Aldehydes Promoted by Dispersion Interactions: Steric and Electronic Factors of a π-Pocket within Cage-Shaped Borates for Molecular Recognition. Chemistry 2020; 26:15023-15034. [PMID: 32870540 DOI: 10.1002/chem.202003594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Selective bond formations are one of the most important reactions in organic synthesis. In the Lewis acid mediated electrophile reactions of carbonyls, the selective formation of a carbonyl-acid complex plays a critical role in determining selectivity, which is based on the difference in the coordinative interaction between the carbonyl and Lewis acid center. Although this strategy has attained progress in selective bond formations, the discrimination between similarly sized aromatic and aliphatic carbonyls that have no functional anchors to strongly interact with the metal center still remains a challenging issue. Herein, this work focuses on molecular recognition driven by dispersion interactions within some aromatic moieties. A Lewis acid catalyst with a π-space cavity, which is referred to as a π-pocket, as the recognition site for aromatic carbonyls is designed. Cage-shaped borates 1B with various π-pockets demonstrated significant chemoselectivity for aromatic aldehydes 3 b-f over that of aliphatic 3 a in competitive hetero-Diels-Alder reactions. The effectiveness of our catalysts was also evidenced by intramolecular recognition of the aromatic carbonyl within a dicarbonyl substrate. Mechanistic and theoretical studies demonstrated that the selective activation of aromatic substrates was driven by the preorganization step with a larger dispersion interaction, rather than the rate-determining step of the C-C bond formation, and this was likely to contribute to the preferred activation of aromatic substrates over that of aliphatic ones.
Collapse
Affiliation(s)
- Daiki Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yuya Tsutsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Koichi Nakaoka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Hideto Nakajima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Akio Baba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kouji Chiba
- Material Science Division, MOLSIS Inc., 1-28-38 Shinkawa, Chuo-ku, Tokyo, 1040033, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| |
Collapse
|
3
|
Uchikura T, Oshima M, Kawasaki M, Takahashi K, Iwasawa N. Supramolecular Photocatalysis by Utilizing the Host-Guest Charge-Transfer Interaction: Visible-Light-Induced Generation of Triplet Anthracenes for [4+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2020; 59:7403-7408. [PMID: 32043287 DOI: 10.1002/anie.201916732] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 01/22/2023]
Abstract
Supramolecular photocatalysis via charge-transfer excitation of a host-guest complex was developed by use of the macrocyclic boronic ester [2+2]BTH-F containing highly electron-deficient difluorobenzothiadiazole moieties. In the presence of a catalytic amount of [2+2]BTH-F , the triplet excited state of anthracene was generated from the charge-transfer excited state of anthracene@[2+2]BTH-F by visible-light irradiation, and cycloaddition of the excited anthracene with several dienes and alkenes proceeded in a [4+2] manner in high yields.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.,Present address: Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan
| | - Mari Oshima
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Minami Kawasaki
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Kohei Takahashi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
4
|
Uchikura T, Oshima M, Kawasaki M, Takahashi K, Iwasawa N. Supramolecular Photocatalysis by Utilizing the Host–Guest Charge‐Transfer Interaction: Visible‐Light‐Induced Generation of Triplet Anthracenes for [4+2] Cycloaddition Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
- Present address: Department of ChemistryFaculty of ScienceGakushuin University, Mejiro, Toshima-ku Tokyo 171-8588 Japan
| | - Mari Oshima
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Minami Kawasaki
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Kohei Takahashi
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
5
|
Li C, Shen C, Nie J, Qiu H. Multi‐Responsive Supramolecular Gels Based on Charge Transfer Interactions. Chem Asian J 2018; 13:1678-1682. [DOI: 10.1002/asia.201800572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Chen Li
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
- Shanghai Institute of CeramicsChinese Academy of Sciences Shanghai 200050 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengshuo Shen
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| | - Jiucheng Nie
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| | - Huibin Qiu
- School of Physical Science and TechnologyShanghaiTech University Shanghai 201210 China
| |
Collapse
|