1
|
Mondal B, Scheer M. Cu(I) Complexes Comprising tetrahedral Mo 2 E 2 or Mo 2 PE units (E=P, As, Sb) as Chelating Ligands. Chemistry 2024; 30:e202303455. [PMID: 38149717 DOI: 10.1002/chem.202303455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 12/28/2023]
Abstract
Novel isomorphous tetranuclear complexes, [(dppf)Cu(μ3 ,η2 : 2 : 2 -E2 {CpMo(CO)2 }2 ]BF4 [E=P (1), As (4), Sb (5), (dppf=1,1'-bis-(diphenylphosphino)-ferrocene)] and [(dppf)Cu(μ3 ,η2 : 2 : 2 -PE{CpMo(CO)2 }2 ]BF4 [E=As (2), Sb(3)] were synthesized from the reactions between [(dppf)Cu(MeCN)2 ][BF4 ] and tetrahedral molybdenum complexes containing unsubstituted homo- and hetero-diatomic group-15 elements [(μ,η2 : 2 -E2 {CpMo(CO)2 }2 ] [E=P (A), As (D), Sb (E)] and [(μ,η2 : 2 -PE{CpMo(CO)2 }2 ] [E=As (B), Sb (C)], respectively. In all these products, the {Mo2 E2 } or {Mo2 PE} moieties coordinate the Cu(I) center via a rare side-on η2 -coordination mode. The X-ray structure analyses of [(dppf)Cu(μ3 ,η2 : 2 : 1 -PSb{CpMo(CO)2 }2 ][BF4 ] demonstrate, for the first time, the utilization of an η1 -coordination mode for the ligand complex C to coordinate to the Cu(I) center. All the products were characterized by X-ray crystallography, NMR and IR spectroscopy, mass spectrometry and elemental analysis. Electrochemical studies also revealed the formation of 1-5, and, further, to understand the structure and bonding of the products, theoretical calculations using density functional theory (DFT) were conducted.
Collapse
Affiliation(s)
- Bijan Mondal
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
2
|
Shelyganov PA, Elsayed Moussa M, Seidl M, Scheer M. Diantimony Complexes [Cp R 2 Mo 2 (CO) 4 (μ,η 2 -Sb 2 )] (Cp R =C 5 H 5 , C 5 H 4 t Bu) as Unexpected Ligands Stabilizing Silver(I) n (n=1-4) Monomers, Dimers and Chains. Angew Chem Int Ed Engl 2023; 62:e202215650. [PMID: 36469453 PMCID: PMC10107263 DOI: 10.1002/anie.202215650] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Synthesis and reactivity of transition metal compounds bearing "naked" pnictogen atoms is an active research area with remarkable bonding patterns observed in the formed compounds. Within this field, intense investigations on the coordination behavior of complexes possessing Pn and Asn (2≤n≤5) moieties have been conducted. However, studies on heavier analogues have been ignored so far due to arduous challenges related to low yields and moderate air stability. Herein, we present the first in-depth study addressing the reactivity of organometallic complexes containing Sb-donor atoms with several AgI salts. These reactions afforded twelve unprecedented aggregates as monomers, dimers as well as three- and four-membered chains of AgI ions claimed in the literature to be inaccessible. Interatomic distances as well as computational evidence obtained with help of several different methods suggest the presence of Ag⋅⋅⋅Ag interactions in all complexes containing more than one AgI ion.
Collapse
Affiliation(s)
- Pavel A. Shelyganov
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Michael Seidl
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
3
|
Riesinger C, Dielmann F, Szlosek R, Virovets AV, Scheer M. Synthesis and Reactivity of a Cyclooctatetraene-Like Polyphosphorus Ligand Complex [Cyclo-P 8 ]. Angew Chem Int Ed Engl 2023; 62:e202218828. [PMID: 36692270 DOI: 10.1002/anie.202218828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
The thermolysis of Cp'''Ta(CO)4 with white phosphorus (P4 ) gives access to [{Cp'''Ta}2 (μ,η2 : 2 : 2 : 2 : 1 : 1 -P8 )] (A), representing the first complex containing a cyclooctatetraene-like (COT) cyclo-P8 ligand. While ring sizes of n >6 have remained elusive for cyclo-Pn structural motifs, the choice of the transition metal, co-ligand and reaction conditions allowed the isolation of A. Reactivity investigations reveal its versatile coordination behaviour as well as its redox properties. Oxidation leads to dimerization to afford [{Cp'''Ta}4 (μ4 ,η2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1 -P16 )][TEF]2 (4, TEF=[Al(OC{CF3 }3 )4 ]- ). Reduction, however, leads to the fission of one P-P bond in A followed by rapid dimerization to form [K@[2.2.2]cryptand]2 [{Cp'''Ta}4 (μ4 ,η2 : 2 : 2 : 2 : 2 : 2 : 2 : 2 : 1 : 1 : 1 : 1 -P16 )] (5), which features an unprecedented chain-type P16 ligand. Lastly, A serves as a P2 synthon, via ring contraction to the triple-decker complex [{Cp'''Ta}2 (μ,η6 : 6 -P6 )] (B).
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Fabian Dielmann
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Robert Szlosek
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Alexander V Virovets
- Institute of Inorganic Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| |
Collapse
|
4
|
Riesinger C, Dütsch L, Scheer M. Synthesis and Redox Chemistry of a Homoleptic Iron Arsenic Prismane Cluster. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Manfred Scheer
- University of Regensburg Inorganic Chemistry Universitätsstrasse 31 D-93040 Regensburg GERMANY
| |
Collapse
|
5
|
Piesch M, Reichl S, Riesinger C, Seidl M, Balazs G, Scheer M. Redox Chemistry of Heterobimetallic Polypnictogen Triple-Decker Complexes - Rearrangement, Fragmentation and Transfer. Chemistry 2021; 27:9129-9140. [PMID: 33857335 PMCID: PMC8360055 DOI: 10.1002/chem.202100844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/22/2022]
Abstract
The redox chemistry of the heterobimetallic triple‐decker complexes [(Cp*Fe)(Cp′′′Co)(μ,η5:η4‐E5)] (E=P (1), As (2), Cp*=1,2,3,4,5‐pentamethyl‐cyclopentadienyl, Cp′′′=1,2,4‐tri‐tertbutyl‐cyclopentadienyl) and [(Cp′′′Co)(Cp′′′Ni)(μ,η3:η3‐E3)] (E=P (10), As (11)) was investigated. Compound 1 and 2 could be oxidized to the monocations 3 and 4 and further to the dications 5 and 6, while the initially folded cyclo‐E5 ligand planarizes upon oxidation. The reduction leads to an opposite change in the geometry of the middle deck, which is now folded stronger into the direction of the other metal fragment (formation of monoanions 7 and 8). For the arsenic compound 8, a different behavior is found since a fragmentation into an As6 (9) and As3 ligand complex occurs. The Co and Ni triple‐decker complexes 10 and 11 can be oxidized initially to the heterometallic monocations 12 and 13, which are not stable in solution and convert selectively into the homometallic nickel complexes 14 and 15 and the cobalt complexes 16 and 17. This behavior was further proven by the oxidation of [(Cp′′′Co)(Cp′′Ni)(μ,η3:η2‐P3)] (19, Cp′′=1,3‐di‐tertbutyl‐cyclopentadienyl) comprising two different Cp ligands. The transfer of {CpRM} fragments can be suppressed when a {W(CO)5} unit is coordinated to the P3 ligand (20) prior to the oxidation and the mixed cobalt and nickel cation 21 can be isolated. The reduction of 10 and 11 yields the heterometallic monoanions 22 and 23, where no transfer of the {CpRM} fragments is observed.
Collapse
Affiliation(s)
- Martin Piesch
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Stephan Reichl
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Christoph Riesinger
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Michael Seidl
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Gabor Balazs
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
6
|
Dütsch L, Riesinger C, Balázs G, Scheer M. Synthesis of Tetrahedranes Containing the Unique Bridging Hetero-Dipnictogen Ligand EE' (E ≠ E'=P, As, Sb, Bi). Chemistry 2021; 27:8804-8810. [PMID: 33844876 PMCID: PMC8252408 DOI: 10.1002/chem.202100663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/13/2022]
Abstract
In order to improve and extend the rare class of tetrahedral mixed main group transition metal compounds, a new synthetic route for the complexes [{CpMo(CO)2}2(μ,η2:η2‐PE)] (E=As (1), Sb (2)) is described leading to higher yields and a decrease in reaction steps. Via this route, also the so far unknown heavier analogues containing AsSb (3 a), AsBi (4) and SbBi (5) ligands, respectively, are accessible. Single crystal X‐ray diffraction experiments and DFT calculations reveal that they represent very rare examples of compounds comprising covalent bonds between two different heavy pnictogen atoms, which show multiple bond character and are stabilised without any organic substituents. A simple one‐pot reaction of [CpMo(CO)2]2 with ME(SiMe3)2 (M=Li, K; E=P, As, Sb, Bi) and the subsequent addition of PCl3, AsCl3, SbCl3 or BiCl3, respectively, give the complexes 1–5. This synthesis is also transferable to the already known homo‐dipnictogen complexes [{CpMo(CO)2}2(μ,η2:η2‐E2)] (E=P, As, Sb, Bi) resulting in higher yields comparable to those in the literature reported procedures and allows the introduction of the bulkier and better soluble Cp′ (Cp′=tert butylcyclopentadienyl) ligand.
Collapse
Affiliation(s)
- Luis Dütsch
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
7
|
Fontana N, Espinosa‐Jalapa NA, Seidl M, Bauer JO. Easy Access to Enantiomerically Pure Heterocyclic Silicon-Chiral Phosphonium Cations and the Matched/Mismatched Case of Dihydrogen Release. Chemistry 2021; 27:2649-2653. [PMID: 33264430 PMCID: PMC7898527 DOI: 10.1002/chem.202005171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 11/17/2022]
Abstract
Phosphonium ions are widely used in preparative organic synthesis and catalysis. The provision of new types of cations that contain both functional and chiral information is a major synthetic challenge and can open up new horizons in asymmetric cation-directed and Lewis acid catalysis. We discovered an efficient methodology towards new Si-chiral four-membered CPSSi* heterocyclic cations. Three synthetic approaches are presented. The stereochemical sequence of anchimerically assisted cation formation with B(C6 F5 )3 and subsequent hydride addition was fully elucidated and proceeds with excellent preservation of the chiral information at the stereogenic silicon atom. Also the mechanism of dihydrogen release from a protonated hydrosilane was studied in detail by the help of Si-centered chirality as stereochemical probe. Chemoselectivity switch (dihydrogen release vs. protodesilylation) can easily be achieved through slight modifications of the solvent. A matched/mismatched case was identified and the intermolecularity of this reaction supported by spectroscopic, kinetic, deuterium-labeling experiments, and quantum chemical calculations.
Collapse
Affiliation(s)
- Nicolò Fontana
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Noel Angel Espinosa‐Jalapa
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Michael Seidl
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Jonathan O. Bauer
- Institut für Anorganische ChemieFakultät für Chemie und PharmazieUniversität RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
8
|
Riesinger C, Dütsch L, Balázs G, Bodensteiner M, Scheer M. Cationic Functionalisation by Phosphenium Ion Insertion. Chemistry 2020; 26:17165-17170. [PMID: 32996637 PMCID: PMC7839539 DOI: 10.1002/chem.202003291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Indexed: 12/12/2022]
Abstract
The reaction of [Cp'''Ni(η3 -P3 )] (1) with in situ generated phosphenium ions [RR'P]+ yields the unprecedented polyphosphorus cations of the type [Cp'''Ni(η3 -P4 R2 )][X] (R=Ph (2 a), Mes (2 b), Cy (2 c), 2,2'-biphen (2 d), Me (2 e); [X]- =[OTf]- , [SbF6 ]- , [GaCl4 ]- , [BArF ]- , [TEF]- ) and [Cp'''Ni(η3 -P4 RCl)][TEF] (R=Ph (2 f), tBu (2 g)). In the reaction of 1 with [Br2 P]+ , an analogous compound is observed only as an intermediate and the final product is an unexpected dinuclear complex [{Cp'''Ni}2 (μ,η3 :η1 :η1 -P4 Br3 )][TEF] (3 a). A similar product [{Cp'''Ni}2 (μ,η3 :η1 :η1 -P4 (2,2'-biphen)Cl)][GaCl4 ] (3 b) is obtained, when 2 d[GaCl4 ] is kept in solution for prolonged times. Although the central structural motif of 2 a-g consists of a "butterfly-like" folded P4 ring attached to a {Cp'''Ni} fragment, the structures of 3 a and 3 b exhibit a unique asymmetrically substituted and distorted P4 chain stabilised by two {Cp'''Ni} fragments. Additional DFT calculations shed light on the reaction pathway for the formation of 2 a-2 g and the bonding situation in 3 a.
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Luis Dütsch
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
9
|
Riley RD, Dickie DA, Land MA, Kemp RA, Macdonald CLB, Werner-Zwanziger U, Robertson KN, Clyburne JAC. Heavy Metals Make a Chain: A Catenated Bismuth Compound. Chemistry 2020; 26:7711-7719. [PMID: 32298506 DOI: 10.1002/chem.202001295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/09/2020] [Indexed: 01/20/2023]
Abstract
Catenation is common for the light main-group elements whereas it is rare for the heavy elements. Herein, we report the first example of a neutral molecule containing a Bi4 chain. It is prepared in a one-step reaction between bismuth trichloride and bis(diisopropylphosphino)amine in methanol suspension. The same reaction carried out in dichloromethane gives quite different products. All products have been characterized spectroscopically and using single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Robert D Riley
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Diane A Dickie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA.,Current address: Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Michael A Land
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Richard A Kemp
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Charles L B Macdonald
- Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Ulrike Werner-Zwanziger
- Department of Chemistry, Clean Technologies Research Institute, NMR-3, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Jason A C Clyburne
- Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
10
|
Piesch M, Graßl C, Scheer M. Element-Element Bond Formation upon Oxidation and Reduction. Angew Chem Int Ed Engl 2020; 59:7154-7160. [PMID: 32017349 PMCID: PMC7216884 DOI: 10.1002/anie.201916622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Indexed: 11/26/2022]
Abstract
The redox chemistry of [(Cp′′′Co)2(μ,η2:η2‐E2)2] (E=P (1), As (2); Cp′′′=1,2,4‐tri(tert‐butyl)cyclopentadienyl) was investigated. Both compounds can be oxidized and reduced twice. That way, the monocations [(Cp′′′Co)2(μ,η4:η4‐E4)][X] (E=P, X=BF4 (3 a), [FAl] (3 b); E=As, X=BF4 (4 a), [FAl] (4 b)), the dications [(Cp′′′Co)2(μ,η4:η4‐E4)][TEF]2 (E=P (5), As (6)), and the monoanions [K(18‐c‐6)(dme)2][(Cp′′′Co)2(μ,η4:η4‐E4)] (E=P (7), As (8)) were isolated. Further reduction of 7 leads to the dianionic complex [K(18‐c‐6)(dme)2][K(18‐c‐6)][(Cp′′′Co)2(μ,η3:η3‐P4)] (9), in which the cyclo‐P4 ligand has rearranged to a chain‐like P4 ligand. Further reduction of 8 can be achieved with an excess of potassium under the formation of [K(dme)4][(Cp′′′Co)2(μ,η3:η3‐As3)] (10) and the elimination of an As1 unit. Compound 10 represents the first example of an allylic As3 ligand incorporated into a triple‐decker complex.
Collapse
Affiliation(s)
- Martin Piesch
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Christian Graßl
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
11
|
Piesch M, Graßl C, Scheer M. Element‐Element‐Bindungsbildung durch Oxidation und Reduktion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin Piesch
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Christian Graßl
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Manfred Scheer
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| |
Collapse
|
12
|
Yoshida T, Ahsan HM, Zhang HT, Izuogu DC, Abe H, Ohtsu H, Yamaguchi T, Breedlove BK, Thom AJW, Yamashita M. Ionic-caged heterometallic bismuth-platinum complex exhibiting electrocatalytic CO 2 reduction. Dalton Trans 2020; 49:2652-2660. [PMID: 32043108 DOI: 10.1039/c9dt04817k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An air-stable heterometallic Bi-Pt complex with the formula [BiPt(SAc)5]n (1; SAc = thioacetate) was synthesized. The crystal structure, natural bond orbital (NBO) and local orbital locator (LOL) analyses, localized orbital bonding analysis (LOBA), and X-ray absorption fine structure (XAFS) measurements were used to confirm the existence of Bi-Pt bonding and an ionic cage of O atoms surrounding the Bi ion. From the cyclic voltammetry (CV) and controlled potential electrolysis (CPE) experiments, 1 in tetrahydrofuran reduced CO2 to CO, with a faradaic efficiency (FE) of 92% and a turnover frequency (TOF) of 8 s-1 after 30 min of CPE at -0.79 V vs. NHE. The proposed mechanism includes an energetically favored pathway via the ionic cage, which is supported by the results of DFT calculations and reflectance infrared spectroelectrochemistry data.
Collapse
Affiliation(s)
- Takefumi Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan.
| | - Habib Md Ahsan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan. and Chemistry Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Hai-Tao Zhang
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan.
| | - David Chukwuma Izuogu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan. and Department of Pure & Industrial Chemistry, University of Nigeria, 410001, Nsukka, Nigeria and Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hitoshi Abe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tadashi Yamaguchi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan.
| | - Alex J W Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-aoba, Aramaki, Sendai 980-8578, Japan. and WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan and School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|