1
|
Saboorizadeh B, Zare-Dorabei R, Safavi M, Safarifard V. Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery, Biosensing, and Therapy: A Comprehensive Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22477-22503. [PMID: 39418638 DOI: 10.1021/acs.langmuir.4c02795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The porous materials known as metal-organic frameworks (MOFs) stand out for their enormous surface area, adaptable pore size and shape, and structural variety. These characteristics make them well-suited for various applications, especially in healthcare. This review thoroughly summarizes recent studies on the use of MOFs in drug delivery, biosensing, and therapeutics. MOFs may encapsulate medications, target certain cells or tissues, and regulate their release over time. Additionally, MOFs have the potential to be used in biosensing applications, allowing for the selective detection of chemical and biological substances. MOFs' optical or electrical characteristics may be modified to make biosensors that track physiological data. MOFs show potential for targeted drug delivery and the regulated release of therapeutic substances in cancer treatment. In addition, they may work as potent antibacterial agents, providing a less dangerous option than traditional antibiotics that increase antibiotic resistance. For practical applications, further research is required as well as more consideration for the problems with toxicity and biocompatibility. In addition to addressing the difficulties and promising possibilities in this area, this study intends to provide insights into the potential of MOFs in healthcare for drug delivery, biosensing, and treatment. Despite several essential reviews in this area, it was necessary to look into the most recent research on drug delivery, biosensing, and therapy as a combined concept.
Collapse
Affiliation(s)
- Bahar Saboorizadeh
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33131-93685, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
2
|
Schmidt‐Räntsch T, Verplancke H, Lienert JN, Demeshko S, Otte M, Van Trieste GP, Reid KA, Reibenspies JH, Powers DC, Holthausen MC, Schneider S. Nitrogen Atom Transfer Catalysis by Metallonitrene C-H Insertion: Photocatalytic Amidation of Aldehydes. Angew Chem Int Ed Engl 2022; 61:e202115626. [PMID: 34905281 PMCID: PMC9305406 DOI: 10.1002/anie.202115626] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/18/2022]
Abstract
C-H amination and amidation by catalytic nitrene transfer are well-established and typically proceed via electrophilic attack of nitrenoid intermediates. In contrast, the insertion of (formal) terminal nitride ligands into C-H bonds is much less developed and catalytic nitrogen atom transfer remains unknown. We here report the synthesis of a formal terminal nitride complex of palladium. Photocrystallographic, magnetic, and computational characterization support the assignment as an authentic metallonitrene (Pd-N) with a diradical nitrogen ligand that is singly bonded to PdII . Despite the subvalent nitrene character, selective C-H insertion with aldehydes follows nucleophilic selectivity. Transamidation of the benzamide product is enabled by reaction with N3 SiMe3 . Based on these results, a photocatalytic protocol for aldehyde C-H trimethylsilylamidation was developed that exhibits inverted, nucleophilic selectivity as compared to typical nitrene transfer catalysis. This first example of catalytic C-H nitrogen atom transfer offers facile access to primary amides after deprotection.
Collapse
Affiliation(s)
- Till Schmidt‐Räntsch
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Jonas N. Lienert
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | - Matthias Otte
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| | | | - Kaleb A. Reid
- Department of ChemistryTexas A&M University3255 TAMUCollege StationTX 77843USA
| | | | - David C. Powers
- Department of ChemistryTexas A&M University3255 TAMUCollege StationTX 77843USA
| | - Max C. Holthausen
- Institut für Anorganische und Analytische ChemieGoethe-UniversitätMax-von-Laue-Straße 760438Frankfurt am MainGermany
| | - Sven Schneider
- Institut für Anorganische ChemieUniversität GöttingenTammannstraße 437077GöttingenGermany
| |
Collapse
|
3
|
Schmidt‐Räntsch T, Verplancke H, Lienert JN, Demeshko S, Otte M, Van Trieste GP, Reid KA, Reibenspies JH, Powers DC, Holthausen MC, Schneider S. Nitrogen Atom Transfer Catalysis by Metallonitrene C−H Insertion: Photocatalytic Amidation of Aldehydes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Till Schmidt‐Räntsch
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Hendrik Verplancke
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Jonas N. Lienert
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | - Matthias Otte
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| | | | - Kaleb A. Reid
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | | | - David C. Powers
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Max C. Holthausen
- Institut für Anorganische und Analytische Chemie Goethe-Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Germany
| | - Sven Schneider
- Institut für Anorganische Chemie Universität Göttingen Tammannstraße 4 37077 Göttingen Germany
| |
Collapse
|
4
|
Truong PT, Miller SG, McLaughlin Sta Maria EJ, Bowring MA. Large Isotope Effects in Organometallic Chemistry. Chemistry 2021; 27:14800-14815. [PMID: 34347912 DOI: 10.1002/chem.202102189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 01/24/2023]
Abstract
The kinetic isotope effect (KIE) is key to understanding reaction mechanisms in many areas of chemistry and chemical biology, including organometallic chemistry. This ratio of rate constants, kH /kD , typically falls between 1-7. However, KIEs up to 105 have been reported, and can even be so large that reactivity with deuterium is unobserved. We collect here examples of large KIEs across organometallic chemistry, in catalytic and stoichiometric reactions, along with their mechanistic interpretations. Large KIEs occur in proton transfer reactions such as protonation of organometallic complexes and clusters, protonolysis of metal-carbon bonds, and dihydrogen reactivity. C-H activation reactions with large KIEs occur with late and early transition metals, photogenerated intermediates, and abstraction by metal-oxo complexes. We categorize the mechanistic interpretations of large KIEs into the following three types: (a) proton tunneling, (b) compound effects from multiple steps, and (c) semi-classical effects on a single step. This comprehensive collection of large KIEs in organometallics provides context for future mechanistic interpretation.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | - Sophia G Miller
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| | | | - Miriam A Bowring
- Department of Chemistry, Reed College, 3203 SE Woodstock Blvd., Portland, OR 97222
| |
Collapse
|
5
|
Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021; 275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Nanozymes are next-generation artificial enzymes having distinguished features such as cost-effective, enhanced surface area, and high stability. However, limited selectivity and moderate activity of nanozymes in the biochemical environment hindered their usage and encouraged researchers to seek alternative catalytic materials. Recently, metal-organic frameworks (MOFs) characterized by distinct crystalline porous structures with large surface area, tunable pores, and uniformly dispersed active sites emerged, that filled the gap between natural enzymes and nanozymes. Moreover, by selecting suitable metal ions and organic linkers, MOFs can be designed for effective bacterial theranostics. In this review, we briefly presented the design and fabrication of MOFs. Then, we demonstrated the applications of MOFs in bacterial theranostics and their safety considerations. Finally, we proposed the major obstacles and opportunities for further development in research on the interface of nanozymes and MOFs. We expect that MOFs based nanozymes with unique physicochemical and intrinsic enzyme-mimicking properties will gain broad interest in both fundamental research and biomedical applications.
Collapse
|
6
|
Wang H, Wu L, Zheng B, Du L, To W, Ko C, Phillips DL, Che C. C−H Activation by an Iron‐Nitrido Bis‐Pocket Porphyrin Species. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hai‐Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Bin Zheng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Wai‐Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Cheng‐Hoi Ko
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
7
|
Wang HX, Wu L, Zheng B, Du L, To WP, Ko CH, Phillips DL, Che CM. C-H Activation by an Iron-Nitrido Bis-Pocket Porphyrin Species. Angew Chem Int Ed Engl 2021; 60:4796-4803. [PMID: 33205509 DOI: 10.1002/anie.202014191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Indexed: 12/11/2022]
Abstract
High-valent iron-nitrido species are nitrogen analogues of iron-oxo species which are versatile reagents for C-H oxidation. Nonetheless, C-H activation by iron-nitrido species has been scarcely explored, as this is often hampered by their instability and short lifetime in solutions. Herein, the hydrogen atom transfer (HAT) reactivity of an Fe porphyrin nitrido species (2 c) toward C-H substrates was studied in solutions at room temperature, which was achieved by nanosecond laser flash photolysis (LFP) of its FeIII -azido precursor (1 c) supported by a bulky bis-pocket porphyrin ligand. C-H bonds with bond dissociation enthalpies (BDEs) of up to ≈84 kcal mol-1 could be activated, and the second-order rate constants (k2 ) are on the order of 102 -104 s-1 m-1 . The Fe-amido product formed after HAT could further release ammonia upon protonation.
Collapse
Affiliation(s)
- Hai-Xu Wang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bin Zheng
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lili Du
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Cheng-Hoi Ko
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - David Lee Phillips
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,HKU Shenzhen Institute of Research & Innovation, Shenzhen, China
| |
Collapse
|
8
|
Gao W, Sur A, Wang C, Lorzing GR, Antonio AM, Taggart GA, Ezazi AA, Bhuvanesh N, Bloch ED, Powers DC. Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization. Angew Chem Int Ed Engl 2020; 59:10878-10883. [DOI: 10.1002/anie.202002638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/04/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Wen‐Yang Gao
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Aishanee Sur
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Chen‐Hao Wang
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Gregory R. Lorzing
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Alexandra M. Antonio
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Garrett A. Taggart
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Andrew A. Ezazi
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|
9
|
Gao W, Sur A, Wang C, Lorzing GR, Antonio AM, Taggart GA, Ezazi AA, Bhuvanesh N, Bloch ED, Powers DC. Atomically Precise Crystalline Materials Based on Kinetically Inert Metal Ions via Reticular Mechanopolymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wen‐Yang Gao
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Aishanee Sur
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Chen‐Hao Wang
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Gregory R. Lorzing
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Alexandra M. Antonio
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Garrett A. Taggart
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Andrew A. Ezazi
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Nattamai Bhuvanesh
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|
10
|
Martínez‐Martínez AJ, Rees NH, Weller AS. Reversible Encapsulation of Xenon and CH
2
Cl
2
in a Solid‐State Molecular Organometallic Framework (Guest@SMOM). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Antonio J. Martínez‐Martínez
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
- Current Address: CIQSO-Centre for Research in Sustainable Chemistry and Department of ChemistryUniversity of Huelva Campus El Carmen 21007 Huelva Spain
| | - Nicholas H. Rees
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
| | - Andrew S. Weller
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of Oxford Oxford OX1 3TA UK
| |
Collapse
|
11
|
Martínez‐Martínez AJ, Rees NH, Weller AS. Reversible Encapsulation of Xenon and CH 2 Cl 2 in a Solid-State Molecular Organometallic Framework (Guest@SMOM). Angew Chem Int Ed Engl 2019; 58:16873-16877. [PMID: 31539184 PMCID: PMC6899477 DOI: 10.1002/anie.201910539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/22/2022]
Abstract
Reversible encapsulation of CH2 Cl2 or Xe in a non-porous solid-state molecular organometallic framework of [Rh(Cy2 PCH2 PCy2 )(NBD)][BArF4 ] occurs in single-crystal to single-crystal transformations. These processes are probed by solid-state NMR spectroscopy, including 129 Xe SSNMR. Non-covalent interactions with the -CF3 groups, and hydrophobic channels formed, of [BArF4 ]- anions are shown to be important, and thus have similarity to the transport of substrates and products to and from the active site in metalloenzymes.
Collapse
Affiliation(s)
- Antonio J. Martínez‐Martínez
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
- Current Address: CIQSO-Centre for Research in Sustainable Chemistry and Department of ChemistryUniversity of HuelvaCampus El Carmen21007HuelvaSpain
| | - Nicholas H. Rees
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Andrew S. Weller
- Chemistry Research LaboratoriesDepartment of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| |
Collapse
|
12
|
Kumar P, Anand B, Tsang YF, Kim KH, Khullar S, Wang B. Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2019; 176:108488. [PMID: 31295665 DOI: 10.1016/j.envres.2019.05.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/02/2019] [Accepted: 05/13/2019] [Indexed: 05/23/2023]
Abstract
Metal organic frameworks (MOFs) have been investigated extensively for separation, storage, catalysis, and sensing applications. Nonetheless, problems associated with their toxicity, recycling/reuse/regeneration, and degradation have yet to be addressed as one criterion to satisfy their commercialization. Here, the challenges associated with MOF-based technology have been explored to further expand their practical utility in various applications. We start a brief description of challenges associated with MOF-based technology followed by a critical evaluation of toxicity and need of technical options for regeneration of MOFs. Importantly, diverse techniques/process for reuse and regeneration of MOFs like activation of MOFs by heat, vacuum, solvent exchange, supercritical carbon dioxide (SCCO2) and other miscellaneous options have been discussed with recent examples. Afterward, we also present an economical aspect and future perspectives of MOFs for real world applications. All in all, we aimed to present opportunities and critical review of the current status of MOF technology with respect to their recycling/reuse/regeneration to consider their environmental impact.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Nano Sciences & Materials, Central University of Jammu, Jammu, 181143, J & K, India; Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Bhaskar Anand
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Sadhika Khullar
- Department of Chemistry, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India
| | - Bo Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 S. Zhongguancun Ave. Haidian District, Beijing, 100081 , China
| |
Collapse
|
13
|
Gao W, Cardenal AD, Wang C, Powers DC. In Operando Analysis of Diffusion in Porous Metal‐Organic Framework Catalysts. Chemistry 2018; 25:3465-3476. [DOI: 10.1002/chem.201804490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Wen‐Yang Gao
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Ashley D. Cardenal
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Chen‐Hao Wang
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - David C. Powers
- Department of Chemistry Texas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|