1
|
Zhang N, Wang Y, Wu R, Yang X, Wu Y, Wang F, Cui P, Liu G, Jiang W, Xie H. NiIr Nanowire Assembles as an Efficient Electrocatalyst Towards Oxygen Evolution Reaction in Both Acid and Alkaline Media. Chem Asian J 2025; 20:e202400851. [PMID: 39392563 DOI: 10.1002/asia.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Oxygen evolution reaction (OER) is the rate-limiting step in water electrolysis due to its sluggish kinetic, and it is challenging to develop an OER catalyst that could work efficiently in both acid and alkaline environment. Herein, NiIr nanowire assembles (NAs) with unique nanoflower morphology were prepared by a facile hydrothermal method. As a result, the NiIr NAs exhibited superior OER activity in both acid and alkaline media. Specifically, in 0.1 M HClO4, NiIr NAs presented a superior electrocatalytic performance with a low overpotential of merely 242 mV at 10 mA cm-2 and a Tafel slope of only 58.1 mV dec-1, surpassing that of commercial IrO2 and pure Ir NAs. And it achieved a significantly higher mass activity of 148.40 A/g at -1.5 V versus RHE. In 1.0 M KOH, NiIr NAs has an overpotential of 291 mV at 10 mA cm-2 and a Tafel slope of 42.1 mV dec-1. Such remarkable activity makes the NiIr NAs among the best of recently reported representative Ir-based OER electrocatalysts. Density functional theory (DFT) calculations confirmed alloying effect promotes surface bonding of NiIr with oxygen-containing reactants, resulting in excellent catalytic properties.
Collapse
Affiliation(s)
- Ning Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Yalun Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Ruxue Wu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Xianwen Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Yan Wu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Fangmu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P.R. China
| | - Guigao Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P.R. China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, Zhejiang, 310003, P.R. China
| |
Collapse
|
2
|
Wu J, Fan J, Zhao X, Wang Y, Wang D, Liu H, Gu L, Zhang Q, Zheng L, Singh DJ, Cui X, Zheng W. Atomically Dispersed MoO x on Rhodium Metallene Boosts Electrocatalyzed Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202207512. [PMID: 35762984 DOI: 10.1002/anie.202207512] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 11/06/2022]
Abstract
Accelerating slow water dissociation kinetics is key to boosting the hydrogen evolution reaction (HER) in alkaline media. We report the synthesis of atomically dispersed MoOx species anchored on Rh metallene using a one-pot solvothermal method. The resulting structures expose the oxide-metal interfaces to the maximum extent. This leads to a MoOx -Rh catalyst with ultrahigh alkaline HER activity. We obtained a mass activity of 2.32 A mgRh -1 at an overpotential of 50 mV, which is 11.8 times higher than that of commercial Pt/C and surpasses the previously reported Rh-based electrocatalysts. First-principles calculations demonstrate that the interface between MoOx and Rh is the active center for alkaline HER. The MoOx sites preferentially adsorb and dissociate water molecules, and adjacent Rh sites adsorb the generated atomic hydrogen for efficient H2 evolution. Our findings illustrate the potential of atomic interface engineering strategies in electrocatalysis.
Collapse
Affiliation(s)
- Jiandong Wu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Ying Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Dewen Wang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Hongtai Liu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Lin Gu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Zhang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Laboratory of Advanced Materials and Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - David J Singh
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO 65211-7010, USA
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| |
Collapse
|
3
|
Wu G, Han X, Cai J, Yin P, Cui P, Zheng X, Li H, Chen C, Wang G, Hong X. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat Commun 2022; 13:4200. [PMID: 35858967 PMCID: PMC9300738 DOI: 10.1038/s41467-022-31971-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Strain has been shown to modulate the electronic structure of noble metal nanomaterials and alter their catalytic performances. Since strain is spatially dependent, it is challenging to expose the active strained interfaces by structural engineering with atomic precision. Herein, we report a facile method to manipulate the planar strain in ultrathin noble metal nanosheets by constructing amorphous-crystalline phase boundaries that can expose the active strained interfaces. Geometric-phase analysis and electron diffraction profile demonstrate the in-plane amorphous-crystalline boundaries can induce about 4% surface tensile strain in the nanosheets. The strained Ir nanosheets display substantially enhanced intrinsic activity toward the hydrogen evolution reaction electrocatalysis with a turnover frequency value 4.5-fold higher than the benchmark Pt/C catalyst. Density functional theory calculations verify that the tensile strain optimizes the d-band states and hydrogen adsorption properties of the strained Ir nanosheets to improve catalysis. Furthermore, the in-plane strain engineering method is demonstrated to be a general approach to boost the hydrogen evolution performance of Ru and Rh nanosheets.
Collapse
Affiliation(s)
- Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Jinyan Cai
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Peiqun Yin
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, P.R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, P.R. China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Technology University, Nanjing, Jiangsu, 211816, P.R. China
| | - Cai Chen
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Gongming Wang
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China.
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China.
| |
Collapse
|
4
|
Wu J, Fan J, Zhao X, Wang Y, Wang D, Liu H, Gu L, Zhang Q, Zheng L, Cui X, Singh DJ, Zheng W. Atomically Dispersed MoOx on Rhodium Metallene Boosts Electrocatalyzed Alkaline Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiandong Wu
- Jilin University School of Materials Science and Engineering CHINA
| | - Jinchang Fan
- Jilin University School of Materials Science and Engineering CHINA
| | - Xiao Zhao
- Jilin University School of Materials Science and Engineering CHINA
| | - Ying Wang
- Jilin University School of Materials Science and Engineering CHINA
| | - Dewen Wang
- Jilin University School of Materials Science and Engineering CHINA
| | - Hongtai Liu
- Jilin University School of Materials Science and Engineering CHINA
| | - Lin Gu
- Chinese Academy of Sciences Institute of Physics CHINA
| | - Qinghua Zhang
- Chinese Academy of Sciences Institute of Physics CHINA
| | - Lirong Zheng
- Chinese Academy of Sciences Institute of High Energy Physics CHINA
| | - Xiaoqiang Cui
- Jilin University School of Materials Science and Engineering 2699 Qianjin Street 130012 Changchun CHINA
| | - David J. Singh
- University of Missouri Department of Physics and Astronomy and Department of Chemistry UNITED STATES
| | - Weitao Zheng
- Jilin University School of Materials Science and Engineering CHINA
| |
Collapse
|
5
|
Kweon Y, Noh S, Shim JH. Low content Ru-incorporated Pd nanowires for bifunctional electrocatalysis. RSC Adv 2021; 11:28775-28784. [PMID: 35478580 PMCID: PMC9038088 DOI: 10.1039/d1ra05577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023] Open
Abstract
This paper reports the facile synthesis and characterization of carbon supported Pd nanowires with low Ru contents (nRuPd/C). An anti-galvanic replacement reaction involving the reduction of Ru(iii) ions by nanoporous Pd nanowires to form nRuPd alloy nanowires was observed. A series of nRuPd/C materials with various Ru/Pd ratios were prepared by the spontaneous deposition of a Ru cluster on a Pd nanowire core using different Ru precursor concentrations (RuCl3 = 0.5, 1.0, 5.0 mM). The successful formation of low content Ru-incorporated Pd nanowires without individual Ru clusters were confirmed using physicochemical characterization. The electrocatalytic activity of the nRuPd/C for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) in alkaline media was measured by RDE polarization experiments. The electrocatalytic activity varied greatly depending on the Ru content on the Pd nanowires. Among the catalysts, the prepared Pd nanowires incorporated with a very small amount of Ru (ca. 1.4 wt%) exhibited excellent electrocatalytic activity toward the ORR and HER: positive ORR/HER onset and E1/2 potentials, higher n value, and lower Tafel slope. The catalytic activity of Pd nanowires with low Ru contents showed superior bifunctional electrocatalytic performance towards both ORR and HER compared to the benchmarking Pt/C.![]()
Collapse
Affiliation(s)
- Yongdeog Kweon
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Sunguk Noh
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Jun Ho Shim
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| |
Collapse
|
6
|
Teng Y, Guo K, Fan D, Guo H, Han M, Xu D, Bao J. Rapid Aqueous Synthesis of Large-Size and Edge/Defect-Rich Porous Pd and Pd-Alloyed Nanomesh for Electrocatalytic Ethanol Oxidation. Chemistry 2021; 27:11175-11182. [PMID: 34019322 DOI: 10.1002/chem.202101144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/25/2022]
Abstract
In this work, a facile aqueous synthesis strategy was used (complete in 5 min at room temperature) to produce large-size Pd, PdCu, and PdPtCu nanomeshes without additional organic ligands or solvent and the volume restriction of reaction solution. The obtained metallic nanomeshes possess graphene-like morphology and a large size of dozens of microns. Abundant edges (coordinatively unsaturated sites, steps, and corners), defects (twins), and mesopores are seen in the metallic ultrathin structures. The formation mechanism for porous Pd nanomeshes disclosed that they undergo oriented attachment growth along the ⟨111⟩ direction. Owing to structural and compositional advantages, PdCu porous nanomeshes with certain elemental ratios (e. g., Pd87 Cu13 ) presented enhanced electrocatalytic performance (larger mass activity, better CO tolerance and stability) toward ethanol oxidation.
Collapse
Affiliation(s)
- Yuxiang Teng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Dongping Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Hongyou Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Min Han
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| |
Collapse
|
7
|
Hu Y, Zhu M, Luo X, Wu G, Chao T, Qu Y, Zhou F, Sun R, Han X, Li H, Jiang B, Wu Y, Hong X. Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angew Chem Int Ed Engl 2021; 60:6533-6538. [DOI: 10.1002/anie.202014857] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Mengzhao Zhu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Xuan Luo
- Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Tingting Chao
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Yunteng Qu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Fangyao Zhou
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Rongbo Sun
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials(IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Technology University Nanjing Jiangsu 211816 China
| | - Bin Jiang
- Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Yuen Wu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
8
|
Hu Y, Zhu M, Luo X, Wu G, Chao T, Qu Y, Zhou F, Sun R, Han X, Li H, Jiang B, Wu Y, Hong X. Coplanar Pt/C Nanomeshes with Ultrastable Oxygen Reduction Performance in Fuel Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Mengzhao Zhu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Xuan Luo
- Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Tingting Chao
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Yunteng Qu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Fangyao Zhou
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Rongbo Sun
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials(IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Technology University Nanjing Jiangsu 211816 China
| | - Bin Jiang
- Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Yuen Wu
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN) Department of Applied Chemistry Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
9
|
Stohr T, Fischer A, Muench F, Antoni M, Wollstadt S, Lohaus C, Kunz U, Clemens O, Klein A, Ensinger W. Electroless Nanoplating of Pd−Pt Alloy Nanotube Networks: Catalysts with Full Compositional Control for the Methanol Oxidation Reaction. ChemElectroChem 2020. [DOI: 10.1002/celc.201901939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tobias Stohr
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Angelina Fischer
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Falk Muench
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Markus Antoni
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Stephan Wollstadt
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Christian Lohaus
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Ulrike Kunz
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Oliver Clemens
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Andreas Klein
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| | - Wolfgang Ensinger
- Department of Materials and Earth SciencesTechnische Universität Darmstadt Alarich-Weiß-Str. 2 64287 Darmstadt Germany
| |
Collapse
|
10
|
Chao T, Zhang Y, Hu Y, Zheng X, Qu Y, Xu Q, Hong X. Atomically Dispersed Pt on Screw-like Pd/Au Core-shell Nanowires for Enhanced Electrocatalysis. Chemistry 2019; 26:4019-4024. [PMID: 31571290 DOI: 10.1002/chem.201903992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/24/2019] [Indexed: 11/09/2022]
Abstract
Engineering noble metal nanostructures at the atomic level can significantly optimize their electrocatalytic performance and remarkably reduce their usage. We report the synthesis of atomically dispersed Pt on screw-like Pd/Au nanowires by using ultrafine Pd nanowires as seeds. Au can selectively grow on the surface of Pd nanowires by an island growth pattern to fabricate surface defect sites to load atomically dispersed Pt, which can be confirmed by X-ray absorption fine structure measurements and aberration corrected HRTEM images. The nanowires with 2.74 at % Pt exhibit superior HER properties in acidic solution with an overpotential of 20.6 mV at 10 mA cm-2 and enhanced alkaline ORR performance with a mass activity over 15 times greater than the commercial platinum/carbon (Pt/C) catalysts.
Collapse
Affiliation(s)
- Tingting Chao
- Center of Advanced Nanocatalysis (CAN) and Department of Applied, Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yida Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, P. R. China.,National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yanmin Hu
- Center of Advanced Nanocatalysis (CAN) and Department of Applied, Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yunteng Qu
- Center of Advanced Nanocatalysis (CAN) and Department of Applied, Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN) and Department of Applied, Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
Zhang X, Ji J, Yang Q, Zhao L, Yuan Q, Hao Y, Jin P, Feng L. Phosphate Doped Ultrathin FeP Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction in Acid Media. ChemCatChem 2019. [DOI: 10.1002/cctc.201900256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xu Zhang
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow University Suzhou 215006 China
| | - Jing Ji
- School of Materials Science and EngineeringHebei University of Technology Tianjin 300130 P.R. China
| | - Qifeng Yang
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow University Suzhou 215006 China
| | - Liang Zhao
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow University Suzhou 215006 China
| | - Quan Yuan
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow University Suzhou 215006 China
| | - Yajuan Hao
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow University Suzhou 215006 China
| | - Peng Jin
- School of Materials Science and EngineeringHebei University of Technology Tianjin 300130 P.R. China
| | - Lai Feng
- College of Energy, Soochow Institute for Energy and Materials InnovationS, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow University Suzhou 215006 China
| |
Collapse
|
12
|
Ge J, Li Z, Hong X, Li Y. Surface Atomic Regulation of Core–Shell Noble Metal Catalysts. Chemistry 2019; 25:5113-5127. [DOI: 10.1002/chem.201805332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Jingjie Ge
- Center of Advanced Nanocatalysis (CAN), Department of Applied ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Zhijun Li
- Center of Advanced Nanocatalysis (CAN), Department of Applied ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of China Hefei 230026 China
| | - Yadong Li
- Department of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
13
|
Chao T, Hu Y, Hong X, Li Y. Design of Noble Metal Electrocatalysts on an Atomic Level. ChemElectroChem 2018. [DOI: 10.1002/celc.201801189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tingting Chao
- Center of Advanced Nanocatalysis (CAN) Department of Chemistry; University of Science and Technology of China Hefei; Anhui 230026 China
| | - Yanmin Hu
- Center of Advanced Nanocatalysis (CAN) Department of Chemistry; University of Science and Technology of China Hefei; Anhui 230026 China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN) Department of Chemistry; University of Science and Technology of China Hefei; Anhui 230026 China
| | - Yadong Li
- Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|