1
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Nguyen HD, Abe M. Crucial Roles of Leaving Group and Open-Shell Cation in Photoreaction of (Coumarin-4-yl)methyl Derivatives. J Am Chem Soc 2024; 146:10993-11001. [PMID: 38579283 DOI: 10.1021/jacs.4c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Photoreactions of (coumarin-4-yl)methyl derivatives have been extensively studied in many fields of chemistry, including organic synthesis and photoinduced drug delivery systems. The identification of the reaction intermediates involved in the photoreactions is crucial not only for elucidating the reaction mechanism but also for the application of the photoreactions. In this study, the photoreactions of 7-diethylamino(coumarin-4-yl)methyl thioester 1a [-SC(O)CH3], thionoester 1b [-OC(S)CH3], and ester 1c [-OC(O)CH3] were investigated to clarify the intermediary species and their chemical behavior. While a radical pair [i.e., 7-diethylamino(coumarin-4-yl)methyl radical and CH3C(O)S•] plays an important role in the photoreactions of 1a and 1b, an ion pair [i.e., 7-diethylamino(coumarin-4-yl)methyl cation, and CH3CO2-] was the key in the photoreaction of 1c. 18O-isotope-labeling of 1c revealed a negligible recombination process within the ion pair. The unprecedented observation was rationalized by the open-shell character of the 7-diethylamino(coumarin-4-yl)methyl cation, whose formation was confirmed through product analysis and transient absorption spectroscopy.
Collapse
Affiliation(s)
- Hai Dang Nguyen
- Department of Chemistry, Graduate School of Advance Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advance Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
- Hiroshima Research Center for Photo-Drug-Delivery Systems (Hi-P-DDS), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| |
Collapse
|
3
|
Kaufmann J, Sinsel F, Heckel A. Chromatic Selectivity of Coumarin-Caged Oligonucleotides. Chemistry 2023; 29:e202204014. [PMID: 36562762 DOI: 10.1002/chem.202204014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/24/2022]
Abstract
A system of two coumarin-based caging groups is presented - one absorbing in the blue (400-450 nm) and the other absorbing in the green (480-550 nm) part of the visible spectrum. Together they form a pair, which allows to selectively photoactivate the one or the other in oligonucleotides. A numerical characterization defining the term "chromatic selectivity" was proposed, and it was shown how chromatically selective uncaging can literally be titrated in a kinetic reaction scheme.
Collapse
Affiliation(s)
- Janik Kaufmann
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt, Germany
| | - Fabian Sinsel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt, Germany
| |
Collapse
|
4
|
Alachouzos G, Schulte AM, Mondal A, Szymanski W, Feringa BL. Computational Design, Synthesis, and Photochemistry of Cy7-PPG, an Efficient NIR-Activated Photolabile Protecting Group for Therapeutic Applications. Angew Chem Int Ed Engl 2022; 61:e202201308. [PMID: 35181979 PMCID: PMC9311213 DOI: 10.1002/anie.202201308] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Photolabile Protecting Groups (PPGs) are molecular tools used, for example, in photopharmacology for the activation of drugs with light, enabling spatiotemporal control over their potency. Yet, red-shifting of PPG activation wavelengths into the NIR range, which penetrates the deepest in tissue, has often yielded inefficient or insoluble molecules, hindering the use of PPGs in the clinic. To solve this problem, we report herein a novel concept in PPG design, by transforming clinically-applied NIR-dyes with suitable molecular orbital configurations into new NIR-PPGs using computational approaches. Using this method, we demonstrate how Cy7, a class of NIR dyes possessing ideal properties (NIR-absorption, high molecular absorptivity, excellent aqueous solubility) can be successfully converted into Cy7-PPG. We report a facile synthesis towards Cy7-PPG from accessible precursors and confirm its excellent properties as the most redshifted oxygen-independent NIR-PPG to date (λmax =746 nm).
Collapse
Affiliation(s)
- Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for ChemistryFaculty for Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Albert M. Schulte
- Centre for Systems Chemistry, Stratingh Institute for ChemistryFaculty for Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Anirban Mondal
- Centre for Systems Chemistry, Stratingh Institute for ChemistryFaculty for Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Wiktor Szymanski
- Department of RadiologyMedical Imaging CenterUniversity Medical Center GroningenUniversity of GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Ben L. Feringa
- Centre for Systems Chemistry, Stratingh Institute for ChemistryFaculty for Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
5
|
Klimek R, Asido M, Hermanns V, Junek S, Wachtveitl J, Heckel A. Inactivation of Competitive Decay Channels Leads to Enhanced Coumarin Photochemistry. Chemistry 2022; 28:e202200647. [PMID: 35420716 PMCID: PMC9320935 DOI: 10.1002/chem.202200647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/30/2022]
Abstract
In the development of photolabile protecting groups, it is of high interest to selectively modify photochemical properties with structural changes as simple as possible. In this work, knowledge of fluorophore optimization was adopted and used to design new coumarin‐ based photocages. Photolysis efficiency was selectively modulated by inactivating competitive decay channels, such as twisted intramolecular charge transfer (TICT) or hydrogen‐bonding, and the photolytic release of the neurotransmitter serotonin was demonstrated. Structural modifications inspired by the fluorophore ATTO 390 led to a significant increase in the uncaging cross section that can be further improved by the simple addition of a double bond. Ultrafast transient absorption spectroscopy gave insights into the underlying solvent‐dependent photophysical dynamics. The chromophores presented here are excellently suited as new photocages in the visible wavelength range due to their simple synthesis and their superior photochemical properties.
Collapse
Affiliation(s)
- Robin Klimek
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Volker Hermanns
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Stephan Junek
- Max Planck Institute for Brain Research Max-von-Laue Str. 4 60438 Frankfurt Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| |
Collapse
|
6
|
Tu Y, Li HM, Wang MM, Su Y, Liu HK, Su Z. Dual Mitochondria‐ and DNA‐Targeting Coumarin‐Pt(IV) Prodrug for the enhancement of Anticancer Performance. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Tu
- Nanjing Normal University Chemistry CHINA
| | | | | | - Yan Su
- Nanjing Normal University Chemistry CHINA
| | | | - Zhi Su
- Nanjing Normal University Chemistry Wenyuan Rd. #1 210093 Nanjing CHINA
| |
Collapse
|
7
|
Wang Z, Martin SF. Design, Synthesis and Evaluation of Novel Carbazole‐Derived Photocages. Chemistry 2022; 28:e202200311. [DOI: 10.1002/chem.202200311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Zhipeng Wang
- Department of Chemistry The University of Texas at Austin Austin Texas 78712 USA
| | - Stephen F. Martin
- Department of Chemistry The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
8
|
Alachouzos G, Schulte AM, Mondal A, Szymanski W, Feringa BL. Computational Design, Synthesis, and Photochemistry of Cy7PPG, an Efficient NIR‐Activated Photolabile Protecting Group for Therapeutic Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Georgios Alachouzos
- Groningen University Faculty of Mathematics and Natural Sciences: Rijksuniversiteit Groningen Faculty of Science and Engineering Stratingh Institute for Chemistry NETHERLANDS
| | - Albert M. Schulte
- Groningen University Faculty of Mathematics and Natural Sciences: Rijksuniversiteit Groningen Faculty of Science and Engineering Stratingh Institute for Chemistry NETHERLANDS
| | - Anirban Mondal
- Groningen University Faculty of Mathematics and Natural Sciences: Rijksuniversiteit Groningen Faculty of Science and Engineering Stratingh Institute for Chemistry NETHERLANDS
| | - Wiktor Szymanski
- University Medical Centre Groningen: Universitair Medisch Centrum Groningen Department of Radiology NETHERLANDS
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
9
|
Zhang Y, Yan C, Zheng Q, Jia Q, Wang Z, Shi P, Guo Z. Harnessing Hypoxia‐Dependent Cyanine Photocages for In Vivo Precision Drug Release. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yutao Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qian Jia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Zhongliang Wang
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education School of Life Science and Technology Xidian University Xi'an Shaanxi 710126 China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai 200237 China
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
10
|
Zhang Y, Yan C, Zheng Q, Jia Q, Wang Z, Shi P, Guo Z. Harnessing Hypoxia-Dependent Cyanine Photocages for In Vivo Precision Drug Release. Angew Chem Int Ed Engl 2021; 60:9553-9561. [PMID: 33569863 DOI: 10.1002/anie.202017349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/04/2021] [Indexed: 12/13/2022]
Abstract
Photocaging holds promise for the precise manipulation of biological events in space and time. However, current near-infrared (NIR) photocages are oxygen-dependent for their photolysis and lack of timely feedback regulation, which has proven to be the major bottleneck for targeted therapy. Herein, we present a hypoxia-dependent photo-activation mechanism of dialkylamine-substituted cyanine (Cy-NH) accompanied by emissive fragments generation, which was validated with retrosynthesis and spectral analysis. For the first time, we have realized the orthogonal manipulation of this hypoxia-dependent photocaging and dual-modal optical signals in living cells and tumor-bearing mice, making a breakthrough in the direct spatiotemporal control and in vivo feedback regulation. This unique photoactivation mechanism overcomes the limitation of hypoxia, which allows site-specific remote control for targeted therapy, and expands the photo-trigger toolbox for on-demand drug release, especially in a physiological context with dual-mode optical imaging under hypoxia.
Collapse
Affiliation(s)
- Yutao Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qian Jia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Zhongliang Wang
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
11
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
12
|
López-Corrales M, Rovira A, Gandioso A, Bosch M, Nonell S, Marchán V. Transformation of COUPY Fluorophores into a Novel Class of Visible-Light-Cleavable Photolabile Protecting Groups. Chemistry 2020; 26:16222-16227. [PMID: 32530072 DOI: 10.1002/chem.202002314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Indexed: 12/29/2022]
Abstract
Although photolabile protecting groups (PPGs) have found widespread applications in several fields of chemistry, biology and materials science, there is a growing interest in expanding the photochemical toolbox to overcome some of the limitations of classical caging groups. In this work, the synthesis of a new class of visible-light-sensitive PPGs based on low-molecular weight COUPY fluorophores with several attractive properties, including long-wavelength absorption, is reported. Besides being stable to spontaneous hydrolysis in the dark, COUPY-based PPGs can be efficiently photoactivated with yellow (560 nm) and red light (620 nm) under physiological-like conditions, thereby offering the possibility of unmasking functional groups from COUPY photocages under irradiation conditions in which other PPGs remain stable. Additionally, COUPY photocages exhibit excellent cellular uptake and accumulate selectively in mitochondria, opening the door to the delivery of caged analogues of biologically active compounds into these organelles.
Collapse
Affiliation(s)
- Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Anna Rovira
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Vía Augusta 390, 08017, Barcelona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
13
|
Tang X, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal‐Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao‐Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Institute of Cancer and Basic Medicine Chinese Academy of Sciences Hangzhou 310022 China
| |
Collapse
|
14
|
Tang XJ, Wu Y, Zhao R, Kou X, Dong Z, Zhou W, Zhang Z, Tan W, Fang X. Photorelease of Pyridines Using a Metal-Free Photoremovable Protecting Group. Angew Chem Int Ed Engl 2020; 59:18386-18389. [PMID: 32671906 DOI: 10.1002/anie.202005310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 12/18/2022]
Abstract
The photorelease of bioactive molecules has emerged as a valuable tool in biochemistry. Nevertheless, many important bioactive molecules, such as pyridine derivatives, cannot benefit from currently available organic photoremovable protecting groups (PPGs). We found that the inefficient photorelease of pyridines is attributed to intramolecular photoinduced electron transfer (PET) from PPGs to pyridinium ions. To alleviate PET, we rationally designed a strategy to drive the excited state of PPG from S1 to T1 with a heavy atom, and synthesized a new PPG by substitution of the H atom at the 3-position of 7-dietheylamino-coumarin-4-methyl (DEACM) with Br or I. This resulted in an improved photolytic efficiency of the pyridinium ion by hundreds-fold in aqueous solution. The PPG can be applied to various pyridine derivatives. The successful photorelease of a microtubule inhibitor, indibulin, in living cells was demonstrated for the potential application of this strategy in biochemical research.
Collapse
Affiliation(s)
- Xiao-Jun Tang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yayun Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rong Zhao
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaolong Kou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zaizai Dong
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Zhou
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhen Zhang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weihong Tan
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
15
|
Li M, Dove AP, Truong VX. Additive‐Free Green Light‐Induced Ligation Using BODIPY Triggers. Angew Chem Int Ed Engl 2020; 59:2284-2288. [DOI: 10.1002/anie.201912555] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ming Li
- School of Materials Science and EngineeringCentral South University Changsha Hunan 410083 China
| | - Andrew P. Dove
- School of ChemistryUniversity of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Vinh X. Truong
- Department of Materials Science and EngineeringMonash University Clayton VIC 3800 Australia
| |
Collapse
|
16
|
|
17
|
Dal Corso A, Pignataro L, Belvisi L, Gennari C. Innovative Linker Strategies for Tumor‐Targeted Drug Conjugates. Chemistry 2019; 25:14740-14757. [DOI: 10.1002/chem.201903127] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Alberto Dal Corso
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
18
|
Chang D, Lindberg E, Feng S, Angerani S, Riezman H, Winssinger N. Luciferase‐Induced Photouncaging: Bioluminolysis. Angew Chem Int Ed Engl 2019; 58:16033-16037. [DOI: 10.1002/anie.201907734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/06/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Dalu Chang
- School of Chemistry and Biochemistry, NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| | - Eric Lindberg
- School of Chemistry and Biochemistry, NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
- Present address: National Heart, Lung, and Blood Institute National Institutes of Health Bethesda MD 20892 USA
| | - Suihan Feng
- School of Chemistry and Biochemistry, NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| | - Simona Angerani
- School of Chemistry and Biochemistry, NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| | - Howard Riezman
- School of Chemistry and Biochemistry, NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| | - Nicolas Winssinger
- School of Chemistry and Biochemistry, NCCR Chemical Biology Faculty of Science University of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| |
Collapse
|
19
|
Chang D, Lindberg E, Feng S, Angerani S, Riezman H, Winssinger N. Luciferase‐Induced Photouncaging: Bioluminolysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dalu Chang
- School of Chemistry and Biochemistry, NCCR Chemical BiologyFaculty of ScienceUniversity of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| | - Eric Lindberg
- School of Chemistry and Biochemistry, NCCR Chemical BiologyFaculty of ScienceUniversity of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
- Present address: National Heart, Lung, and Blood InstituteNational Institutes of Health Bethesda MD 20892 USA
| | - Suihan Feng
- School of Chemistry and Biochemistry, NCCR Chemical BiologyFaculty of ScienceUniversity of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| | - Simona Angerani
- School of Chemistry and Biochemistry, NCCR Chemical BiologyFaculty of ScienceUniversity of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| | - Howard Riezman
- School of Chemistry and Biochemistry, NCCR Chemical BiologyFaculty of ScienceUniversity of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| | - Nicolas Winssinger
- School of Chemistry and Biochemistry, NCCR Chemical BiologyFaculty of ScienceUniversity of Geneva 30 quai Ernest-Ansermet Geneva Switzerland
| |
Collapse
|
20
|
Nassar SJM, Wills C, Harriman A. Inhibition of the Photobleaching of Methylene Blue by Association with Urea. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sulafa Jamal M. Nassar
- Molecular Photonics Laboratory, SNES- ChemistryNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Corinne Wills
- NMR Laboratory School of Natural and Environmental ScienceNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, SNES- ChemistryNewcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|