1
|
Bocquelet C, Rougier N, Le HN, Veyre L, Thieuleux C, Melzi R, Purea A, Banks D, Kempf JG, Stern Q, Vaneeckhaute E, Jannin S. Boosting 1H and 13C NMR signals by orders of magnitude on a bench. SCIENCE ADVANCES 2024; 10:eadq3780. [PMID: 39630888 PMCID: PMC11616688 DOI: 10.1126/sciadv.adq3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Sensitivity is often the Achilles' heel of liquid-state nuclear magnetic resonance (NMR) experiments. This problem is perhaps most pressing at the lowest fields (e.g., 80-MHz 1H frequency), with rapidly increasing access to NMR through benchtop systems, but also sometimes for higher-field NMR systems from 300 MHz to 1.2 GHz. Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) can address this sensitivity limitation. However, dDNP implies massive and complex cryogenic and high-field instrumentation, which cannot be installed on the bench. We introduce here a compact helium-free 1-T tabletop polarizer as a simple and low-cost alternative. After freezing and polarizing the frozen analyte solutions at 77 K, we demonstrate 1H signal enhancement factors of 100, with rapid 1-s buildup times. The high polarization is subsequently transferred by 1H→13C cross polarization (CP) to 13C spins. Such a simple benchtop polarizer, in combination with hyperpolarizing solid matrices (HYPSOs), may open the way to replenishable hyperpolarization throughout multiple liquid-state NMR experiments.
Collapse
Affiliation(s)
- Charlotte Bocquelet
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Nathan Rougier
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Huu-Nghia Le
- Universite Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Laurent Veyre
- Universite Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Chloe Thieuleux
- Universite Claude Bernard Lyon 1, Institut de Chimie de Lyon, CP2M UMR 5128 CNRS-UCBL-CPE Lyon, 69616 Villeurbanne, France
| | - Roberto Melzi
- Bruker Italia S.r.l., Viale V. Lancetti 43, 20158 Milano, Italy
| | | | | | | | - Quentin Stern
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Ewoud Vaneeckhaute
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| | - Sami Jannin
- Universite Claude Bernard Lyon 1, CNRS, ENS Lyon, CRMN UMR 5082, 69100 Villeurbanne, France
| |
Collapse
|
2
|
Stern Q, Verhaeghe G, El Daraï T, Montarnal D, Huu Le N, Veyre L, Thieuleux C, Bocquelet C, Cala O, Jannin S. Dynamic Nuclear Polarization with Conductive Polymers. Angew Chem Int Ed Engl 2024; 63:e202409510. [PMID: 39264818 DOI: 10.1002/anie.202409510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/14/2024]
Abstract
The low sensitivity of liquid-state nuclear magnetic resonance (NMR) can be overcome by hyperpolarizing nuclear spins by dissolution dynamic nuclear polarization (dDNP). It consists of transferring the near-unity polarization of unpaired electron spins of stable radicals to the nuclear spins of interest at liquid helium temperatures, below 2 K, before melting the sample in view of hyperpolarized liquid-state magnetic resonance experiments. Reaching such a temperature is challenging and requires complex instrumentation, which impedes the deployment of dDNP. Here, we propose organic conductive polymers such as polyaniline (PANI) as a new class of polarizing matrices and report 1H polarizations of up to 5 %. We also show that 13C spins of a host solution impregnated in porous conductive polymers can be hyperpolarized by relayed DNP. Such conductive polymers can be synthesized as chiral and display current induced spin selectivity leading to electron spin hyperpolarization close to unity without the need for low temperatures nor high magnetic fields. Our results show the feasibility of solid-state DNP in conductive polymers that are known to exhibit chirality-induced spin selectivity.
Collapse
Affiliation(s)
- Quentin Stern
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Guillaume Verhaeghe
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Théo El Daraï
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Damien Montarnal
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Nghia Huu Le
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Laurent Veyre
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Chloé Thieuleux
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Charlotte Bocquelet
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Olivier Cala
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| |
Collapse
|
3
|
Dos Santos K, Bertho G, Baudin M, Giraud N. Glutamine: A key player in human metabolism as revealed by hyperpolarized magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:15-39. [PMID: 39645348 DOI: 10.1016/j.pnmrs.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 12/09/2024]
Abstract
In recent years, there has been remarkable progress in the field of dissolution dynamic nuclear polarization (D-DNP). This method has shown significant potential for enhancing nuclear polarization by over 10,000 times, resulting in a substantial increase in sensitivity. The unprecedented signal enhancements achieved with D-DNP have opened new possibilities for in vitro analysis. This method enables the monitoring of structural and enzymatic kinetics with excellent time resolution at low concentrations. Furthermore, these advances can be straightforwardly translated to in vivo magnetic resonance imaging and magnetic resonance spectroscopy (MRI and MRS) experiments. D-DNP studies have used a range of 13C labeled molecules to gain deeper insights into the cellular metabolic pathways and disease hallmarks. Over the last 15 years, D-DNP has been used to analyze glutamine, a key player in the cellular metabolism, involved in many diseases including cancer. Glutamine is the most abundant amino acid in blood plasma and the major carrier of nitrogen, and it is converted to glutamate inside the cell, where the latter is the most abundant amino acid. It has been shown that increased glutamine consumption by cells is a hallmark of tumor cancer metabolism. In this review, we first highlight the significance of glutamine in metabolism, providing an in-depth description of its use at the cellular level as well as its specific roles in various organs. Next, we present a comprehensive overview of the principles of D-DNP. Finally, we review the state of the art in D-DNP glutamine analysis and its application in oncology, neurology, and perfusion marker studies.
Collapse
Affiliation(s)
- Karen Dos Santos
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Gildas Bertho
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Mathieu Baudin
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL Université, Sorbonne Université 45 rue d'Ulm, 75005 Paris, France
| | - Nicolas Giraud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques Université Paris Cité, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
4
|
Stern Q, Reynard-Feytis Q, Elliott SJ, Ceillier M, Cala O, Ivanov K, Jannin S. Rapid and Simple 13C-Hyperpolarization by 1H Dissolution Dynamic Nuclear Polarization Followed by an Inline Magnetic Field Inversion. J Am Chem Soc 2023; 145:27576-27586. [PMID: 38054954 DOI: 10.1021/jacs.3c09209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Dissolution dynamic nuclear polarization (dDNP) is a method of choice for preparing hyperpolarized 13C metabolites such as 1-13C-pyruvate used for in vivo applications, including the real-time monitoring of cancer cell metabolism in human patients. The approach consists of transferring the high polarization of electron spins to nuclear spins via microwave irradiation at low temperatures (1.0-1.5 K) and moderate magnetic fields (3.3-7 T). The solid sample is then dissolved and transferred to an NMR spectrometer or MRI scanner for detection in the liquid state. Common dDNP protocols use direct hyperpolarization of 13C spins reaching polarizations of >50% in ∼1-2 h. Alternatively, 1H spins are polarized before transferring their polarization to 13C spins using cross-polarization, reaching polarization levels similar to those of direct DNP in only ∼20 min. However, it relies on more complex instrumentation, requiring highly skilled personnel. Here, we explore an alternative route using 1H dDNP followed by inline adiabatic magnetic field inversion in the liquid state during the transfer. 1H polarizations of >70% in the solid state are obtained in ∼5-10 min. As the hyperpolarized sample travels from the dDNP polarizer to the NMR spectrometer, it goes through a field inversion chamber, which causes the 1H → 13C polarization transfer. This transfer is made possible by the J-coupling between the heteronuclei, which mixes the Zeeman states at zero-field and causes an antilevel crossing. We report liquid-state 13C polarization up to ∼17% for 3-13C-pyruvate and 13C-formate. The instrumentation needed to perform this experiment in addition to a conventional dDNP polarizer is simple and readily assembled.
Collapse
Affiliation(s)
- Quentin Stern
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Quentin Reynard-Feytis
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Stuart J Elliott
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
- Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United Kingdom
| | - Morgan Ceillier
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Olivier Cala
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| | - Konstantin Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne 69100 France
| |
Collapse
|
5
|
Dey A, Charrier B, Lemaitre K, Ribay V, Eshchenko D, Schnell M, Melzi R, Stern Q, Cousin S, Kempf J, Jannin S, Dumez JN, Giraudeau P. Fine optimization of a dissolution dynamic nuclear polarization experimental setting for 13C NMR of metabolic samples. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:183-202. [PMID: 37904870 PMCID: PMC10583282 DOI: 10.5194/mr-3-183-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/16/2022] [Indexed: 11/01/2023]
Abstract
NMR-based analysis of metabolite mixtures provides crucial information on biological systems but mostly relies on 1D 1 H experiments for maximizing sensitivity. However, strong peak overlap of 1 H spectra often is a limitation for the analysis of inherently complex biological mixtures. Dissolution dynamic nuclear polarization (d-DNP) improves NMR sensitivity by several orders of magnitude, which enables 13 C NMR-based analysis of metabolites at natural abundance. We have recently demonstrated the successful introduction of d-DNP into a full untargeted metabolomics workflow applied to the study of plant metabolism. Here we describe the systematic optimization of d-DNP experimental settings for experiments at natural 13 C abundance and show how the resolution, sensitivity, and ultimately the number of detectable signals improve as a result. We have systematically optimized the parameters involved (in a semi-automated prototype d-DNP system, from sample preparation to signal detection, aiming at providing an optimization guide for potential users of such a system, who may not be experts in instrumental development). The optimization procedure makes it possible to detect previously inaccessible protonated 13 C signals of metabolites at natural abundance with at least 4 times improved line shape and a high repeatability compared to a previously reported d-DNP-enhanced untargeted metabolomic study. This extends the application scope of hyperpolarized 13 C NMR at natural abundance and paves the way to a more general use of DNP-hyperpolarized NMR in metabolomics studies.
Collapse
Affiliation(s)
- Arnab Dey
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Benoît Charrier
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Karine Lemaitre
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, 44000 Nantes, France
| | - Dmitry Eshchenko
- Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Marc Schnell
- Bruker Biospin, Industriestrasse 26, 8117 Fällanden, Switzerland
| | - Roberto Melzi
- Bruker Biospin, Viale V. Lancetti 43, 20158 Milan, Italy
| | - Quentin Stern
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1,
ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), UMR5082,
69100 Villeurbanne, France
| | | | | | - Sami Jannin
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1,
ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), UMR5082,
69100 Villeurbanne, France
| | | | | |
Collapse
|
6
|
Fujiwara S, Matsumoto N, Nishimura K, Kimizuka N, Tateishi K, Uesaka T, Yanai N. Triplet Dynamic Nuclear Polarization of Guest Molecules through Induced Fit in a Flexible Metal–Organic Framework**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saiya Fujiwara
- Department of Applied Chemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku, Fukuoka 819-0395 Japan
| | - Naoto Matsumoto
- Department of Applied Chemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku, Fukuoka 819-0395 Japan
| | - Koki Nishimura
- Department of Applied Chemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku, Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku, Fukuoka 819-0395 Japan
| | - Kenichiro Tateishi
- Cluster for Pioneering Research RIKEN RIKEN Nishina Center for Accelerator-Based Science Wako, Saitama 351-0198 Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research RIKEN RIKEN Nishina Center for Accelerator-Based Science Wako, Saitama 351-0198 Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry Graduate School of Engineering Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku, Fukuoka 819-0395 Japan
- PRESTO JST Honcho 4-1-8 Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
7
|
Fujiwara S, Matsumoto N, Nishimura K, Kimizuka N, Tateishi K, Uesaka T, Yanai N. Triplet Dynamic Nuclear Polarization of Guest Molecules through Induced Fit in a Flexible Metal-Organic Framework. Angew Chem Int Ed Engl 2021; 61:e202115792. [PMID: 34935275 DOI: 10.1002/anie.202115792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/12/2022]
Abstract
Dynamic nuclear polarization utilizing photoexcited triplet electrons (triplet-DNP) has great potential for room-temperature hyperpolarization of nuclear spins. However, the polarization transfer to molecules of interest remains a challenge due to the fast spin relaxation and weak interaction with target molecules at room temperature in conventional host materials. Here, we demonstrate the first example of DNP of guest molecules in a porous material at around room temperature by utilizing the induced-fit-type structural transformation of a crystalline yet flexible metal-organic framework (MOF). In contrast to the usual hosts, 1 H spin-lattice relaxation time becomes longer by accommodating a pharmaceutical model target 5-fluorouracil as the flexible MOF changes its structure upon guest accommodation to maximize the host-guest interactions. Combined with triplet-DNP and cross-polarization (CP), this system realizes an enhanced 19 F-NMR signal of guest target molecules.
Collapse
Affiliation(s)
- Saiya Fujiwara
- Kyushu University: Kyushu Daigaku, Department of Applied Chemistry, JAPAN
| | - Naoto Matsumoto
- Kyushu University: Kyushu Daigaku, Department of Applied Chemistry, JAPAN
| | - Koki Nishimura
- Kyushu University: Kyushu Daigaku, Department of Applied Chemistry, JAPAN
| | - Nobuo Kimizuka
- Kyushu University: Kyushu Daigaku, Department of Applied Chemistry, JAPAN
| | | | - Tomohiro Uesaka
- RIKEN: Rikagaku Kenkyujo, Cluster for Pioneering Research, JAPAN
| | - Nobuhiro Yanai
- Kyushu University, Department of Chemistry and Biochemistry, 744 Moto-oka, Nishi-ku, 819-0395, Fukuoka, JAPAN
| |
Collapse
|
8
|
Elliott SJ, Stern Q, Cala O, Jannin S. Protonation tuned dipolar order mediated 1H→ 13C cross-polarization for dissolution-dynamic nuclear polarization experiments. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 116:101762. [PMID: 34823210 DOI: 10.1016/j.ssnmr.2021.101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
A strategy of dipolar order mediated nuclear spin polarization transfer has recently been combined with dissolution-dynamic nuclear polarization (dDNP) and improved by employing optimized shaped radiofrequency pulses and suitable molecular modifications. In the context of dDNP experiments, this offers a promising means of transferring polarization from high-gamma 1H spins to insensitive 13C spins with lower peak power and lower energy compared with state-of-the-art cross-polarization schemes. The role of local molecular groups and the glassing matrix protonation level are both postulated to play a key role in the polarization transfer pathway via an intermediary reservoir of dipolar spin order. To gain appreciation of the mechanisms involved in the dipolar order mediated polarization transfer under dDNP conditions, we investigate herein the influence of the pivotal characteristics of the sample makeup: (i) revising the protonation level for the constituents of the DNP glass; and (ii) utilizing deuterated molecular derivatives. Experimental demonstrations are presented for the case of [1-13C]sodium acetate. We find that the proton sample molarity has a large impact on both the optimal parameters and the performance of the dipolar order mediated cross-polarization sequence, with the 13C signal build-up time drastically shortened in the case of high solvent protonation levels. In the case of a deuterated molecular derivative, we observe that the nearby 2H substituted methyl group is deleterious to the 1H→13C transfer phenomenon (particularly at low levels of sample protonation). Overall, increased solvent protonation makes the dipolar order governed polarization transfer significantly faster and more efficient. This study sheds light on the influential sample formulation traits which govern the dipolar order-controlled transfer of polarization and indicates that the polarization transfer efficiencies of deuterated molecules can be boosted and reach high performances simply by adequate solvent protonation.
Collapse
Affiliation(s)
- Stuart J Elliott
- Univ. Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100, Villeurbanne, France.
| | - Quentin Stern
- Univ. Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100, Villeurbanne, France
| | - Olivier Cala
- Univ. Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100, Villeurbanne, France
| | - Sami Jannin
- Univ. Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100, Villeurbanne, France
| |
Collapse
|
9
|
El Daraï T, Cousin SF, Stern Q, Ceillier M, Kempf J, Eshchenko D, Melzi R, Schnell M, Gremillard L, Bornet A, Milani J, Vuichoud B, Cala O, Montarnal D, Jannin S. Porous functionalized polymers enable generating and transporting hyperpolarized mixtures of metabolites. Nat Commun 2021; 12:4695. [PMID: 34349114 PMCID: PMC8338986 DOI: 10.1038/s41467-021-24279-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) has enabled promising applications in spectroscopy and imaging, but remains poorly widespread due to experimental complexity. Broad democratization of dDNP could be realized by remote preparation and distribution of hyperpolarized samples from dedicated facilities. Here we show the synthesis of hyperpolarizing polymers (HYPOPs) that can generate radical- and contaminant-free hyperpolarized samples within minutes with lifetimes exceeding hours in the solid state. HYPOPs feature tunable macroporous porosity, with porous volumes up to 80% and concentration of nitroxide radicals grafted in the bulk matrix up to 285 μmol g-1. Analytes can be efficiently impregnated as aqueous/alcoholic solutions and hyperpolarized up to P(13C) = 25% within 8 min, through the combination of 1H spin diffusion and 1H → 13C cross polarization. Solutions of 13C-analytes of biological interest hyperpolarized in HYPOPs display a very long solid-state 13C relaxation times of 5.7 h at 3.8 K, thus prefiguring transportation over long distances.
Collapse
Affiliation(s)
- Théo El Daraï
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
- Université de Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, Lyon, France
| | - Samuel F Cousin
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France.
| | - Quentin Stern
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Morgan Ceillier
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | | | | | | | | | - Laurent Gremillard
- Université de Lyon, INSA Lyon, MATEIS UMR CNRS 5510, Bât. Blaise Pascal, Villeurbanne, France
| | - Aurélien Bornet
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Jonas Milani
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Basile Vuichoud
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Olivier Cala
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| | - Damien Montarnal
- Université de Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, Lyon, France.
| | - Sami Jannin
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon, UMR5082 - CNRS/UCBL/ENS de Lyon, Villeurbanne, France
| |
Collapse
|
10
|
Elliott SJ, Cala O, Stern Q, Cousin SF, Eshchenko D, Melzi R, Kempf JG, Jannin S. Pulse sequence and sample formulation optimization for dipolar order mediated 1H→ 13C cross-polarization. Phys Chem Chem Phys 2021; 23:9457-9465. [PMID: 33885108 DOI: 10.1039/d1cp00429h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have recently demonstrated the use of contactless radiofrequency pulse sequences under dissolution-dynamic nuclear polarization conditions as an attractive way of transferring polarization from sensitive 1H spins to insensitive 13C spins with low peak radiofrequency pulse powers and energies via a reservoir of dipolar order. However, many factors remain to be investigated and optimized to enable the full potential of this polarization transfer process. We demonstrate herein the optimization of several key factors by: (i) implementing more efficient shaped radiofrequency pulses; (ii) adapting 13C spin labelling; and (iii) avoiding methyl group relaxation sinks. Experimental demonstrations are presented for the case of [1-13C]sodium acetate and other relevant molecular candidates. By employing the range of approaches set out above, polarization transfer using the dipolar order mediated cross-polarization radiofrequency pulse sequence is improved by factors approaching ∼1.65 compared with previous results. Dipolar order mediated 1H→13C polarization transfer efficiencies reaching ∼76% were achieved using significantly reduced peak radiofrequency pulse powers relative to the performance of highly sophisticated state-of-the-art cross-polarization methods, indicating 13C nuclear spin polarization levels on the order of ∼32.1% after 10 minutes of 1H DNP. The approach does not require extensive pulse sequence optimization procedures and can easily accommodate high concentrations of 13C-labelled molecules.
Collapse
Affiliation(s)
- Stuart J Elliott
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - FRE 2034 Université de Lyon/CNRS/Université Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Günther Laukien Prize 2019: C. Griesinger and G. Bodenhausen / Bessel Research Award: H. Ovaa. Angew Chem Int Ed Engl 2019; 58:14023. [PMID: 31529665 DOI: 10.1002/anie.201910381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Günther‐Laukien‐Preis 2019: C. Griesinger und G. Bodenhausen / Bessel‐Forschungspreis: H. Ovaa. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Lo HK, Thiel I, Copéret C. Efficient CO 2 Hydrogenation to Formate with Immobilized Ir-Catalysts Based on Mesoporous Silica Beads. Chemistry 2019; 25:9443-9446. [PMID: 31148292 DOI: 10.1002/chem.201901663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 12/23/2022]
Abstract
The Nozaki Ir-based CO2 hydrogenation catalyst was successfully immobilized on post-functionalized silica beads (d=200 μm) through click chemistry. This material hydrogenates CO2 into formic acid with turnover numbers reaching 2.8×104 in a batch reactor within 24 hours, paving the way towards the design of efficient heterogeneous catalysts for this transformation.
Collapse
Affiliation(s)
- Hung-Kun Lo
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093, Zurich, Switzerland
| | - Indre Thiel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093, Zurich, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, CH-8093, Zurich, Switzerland
| |
Collapse
|