1
|
Matuszewska O, Battisti T, Ferreira RR, Biot N, Demitri N, Mézière C, Allain M, Sallé M, Mañas-Valero S, Coronado E, Fresta E, Costa RD, Bonifazi D. Tweaking the Optoelectronic Properties of S-Doped Polycyclic Aromatic Hydrocarbons by Chemical Oxidation. Chemistry 2023; 29:e202203115. [PMID: 36333273 DOI: 10.1002/chem.202203115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Peri-thiaxanthenothiaxanthene, an S-doped analog of peri-xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S-atoms. Chemical oxidation of peri-thiaxanthenothiaxanthene with H2 O2 led to the relevant sulfoxide and sulfone congeners, whereas electrooxidation gave access to sulfonium-type derivatives forming crystalline mixed valence (MV) complexes. These complexes depicted peculiar molecular and solid-state arrangements with face-to-face π-π stacking organization. Photophysical studies showed a widening of the optical bandgap upon progressive oxidation of the S-atoms, with the bis-sulfone derivative displaying the largest value (E00 =2.99 eV). While peri-thiaxanthenothiaxanthene showed reversible oxidation properties, the sulfoxide and sulfone derivatives mainly showed reductive events, corroborating their n-type properties. Electric measurements of single crystals of the MV complexes exhibited a semiconducting behavior with a remarkably high conductivity at room temperature (10-1 -10-2 S cm-1 and 10-2 -10-3 S cm-1 for the O and S derivatives, respectively), one of the highest reported so far. Finally, the electroluminescence properties of the complexes were tested in light-emitting electrochemical cells (LECs), obtaining the first S-doped mid-emitting PAH-based LECs.
Collapse
Affiliation(s)
- Oliwia Matuszewska
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Tommaso Battisti
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Ruben R Ferreira
- Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Nicolas Biot
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Cécile Mézière
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Magali Allain
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Marc Sallé
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Elisa Fresta
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Yang B, Gu Y, Paternò GM, Teyssandier J, Maghsoumi A, Barker AJ, Mali KS, Scotognella F, De Feyter S, Tommasini M, Feng X, Narita A, Müllen K. Zigzag-Edged Polycyclic Aromatic Hydrocarbons from Benzo[m]tetraphene Precursors. Chemistry 2023; 29:e202203981. [PMID: 36695295 DOI: 10.1002/chem.202203981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
A series of zigzag-edged polycyclic aromatic hydrocarbons (PAHs) (Z1-Z3) were synthesized from 2,12-dibromo-7,14-diphenyl-benzo[m]tetraphene (9) as a versatile building block. Their structures were unambiguously confirmed by laser desorption/ionization time-of-flight mass spectrometry, 1 H NMR, Raman, and Fourier-transformed infrared (FTIR) spectroscopies as well as scanning tunneling microscopy. The fingerprint vibrational modes were elucidated with theoretical support. The edge- and size-dependent optical properties were characterized by UV-Vis absorption and fluorescence spectroscopy and DFT calculations. Moreover, ultrafast transient absorption spectroscopy revealed distinct modulation of the photophysical properties upon π-extension from Z1 to Z2, the latter having a gulf edge.
Collapse
Affiliation(s)
- Bo Yang
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Yanwei Gu
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Giuseppe M Paternò
- Physics Department, Politecnico di Milano Piazza L. da Vinci 32, Milano, 20133, Italy.,Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, 20133, Italy
| | - Joan Teyssandier
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Ali Maghsoumi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica - Politecnico di Milano Piazza Leonardo da Vinci, 32-20133, Milano, Italy
| | - Alex J Barker
- Istituto Italiano di Tecnologia, Center for Nano Science and Technology, Milano, 20133, Italy
| | - Kunal S Mali
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Francesco Scotognella
- Physics Department, Politecnico di Milano Piazza L. da Vinci 32, Milano, 20133, Italy
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica - Politecnico di Milano Piazza Leonardo da Vinci, 32-20133, Milano, Italy
| | - Xinliang Feng
- Center for Advancing Electronics and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01062, Dresden, Germany.,Max Planck Institute of Microstructure Physics Weinberg 2, 06120, Halle, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128, Mainz, Germany.,Department of Chemistry, Johannes Gutenberg University Mainz Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
3
|
Liu Z, Han W, Lan J, Sun L, Tang J, Zhang C, You J. Molecular Engineering of Chalcogen-Embedded Anthanthrenes via peri-Selective C-H Activation: Fine-Tuning of Crystal Packing for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202211412. [PMID: 36347830 DOI: 10.1002/anie.202211412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Disclosed herein is a RhCl3 -catalyzed peri-selective C-H/C-H oxidative homo-coupling of 1-substituted naphthalenes, which provides a highly efficient and streamlined approach to chalcogen-embedded anthanthrenes from readily available starting materials. Introducing O, S, and Se into the anthanthrene skeleton leads to gradually increased π-π stacking distances but significantly enhanced π-π overlaps with the growth of the hetero-atom radius. Moderate π-π distance, overlap area, and intermolecular S-S interactions endow S-embedded anthanthrene (PTT) with excellent 2D charge-transport properties. Moreover, the transformation of p-type to n-type S-embedded anthanthrenes is realized for the first time via the S-atom oxidation from PTT to PTT-O4. In organic field-effect transistor devices, PTT derivatives exhibit hole transport with mobilities up to 1.1 cm2 V-1 s-1 , while PTT-O4 shows electron transport with a mobility of 0.022 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Weiguo Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Lingyan Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Junbin Tang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
4
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022; 61:e202209271. [DOI: 10.1002/anie.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
5
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Kaiqi Ye
- Jilin University College of Chemistry CHINA
| | - Chuandong Dou
- Jilin University State Key Laboratory of Supramolecular Structure and Materials No.2699 Qianjin Street 130012 Changchun CHINA
| | - Yue Wang
- Jilin University College of Chemistry CHINA
| |
Collapse
|
6
|
Fletcher‐Charles J, Ferreira RR, Abraham M, Romito D, Oppel M, González L, Bonifazi D. Oxygen‐Doped PAH Electrochromes: Difurano, Dipyrano, and Furano‐Pyrano Containing Naphthalene‐Cored Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Rúben R. Ferreira
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna 1090 Vienna Austria
| | - Michael Abraham
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna 1090 Vienna Austria
| | - Deborah Romito
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna 1090 Vienna Austria
| | - Markus Oppel
- Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna 1090 Vienna Austria
| | - Leticia González
- Institute of Theoretical Chemistry Faculty of Chemistry University of Vienna 1090 Vienna Austria
| | - Davide Bonifazi
- School of Chemistry Cardiff University Cardiff CF10 3AT United Kingdom
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna 1090 Vienna Austria
| |
Collapse
|
7
|
Pezzetta C, Folli A, Matuszewska O, Murphy D, Davidson RWM, Bonifazi D. peri
‐Xanthenoxanthene (PXX): a Versatile Organic Photocatalyst in Organic Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristofer Pezzetta
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
- Dr. Reddy's Laboratories (EU) 410 Science Park, Milton Road Cambridge CB4 0PE United Kingdom
| | - Andrea Folli
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Oliwia Matuszewska
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Damien Murphy
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
| | - Robert W. M. Davidson
- Dr. Reddy's Laboratories (EU) 410 Science Park, Milton Road Cambridge CB4 0PE United Kingdom
| | - Davide Bonifazi
- School of Chemistry Cardiff University Park Place Cardiff CF10 3AT United Kingdom
- Institute of Organic Chemistry Faculty of Chemistry University of Vienna Währinger Strasse 38 1090 Vienna Austria
| |
Collapse
|
8
|
Min Y, Cao X, Tian H, Liu J, Wang L. B←N-Incorporated Dibenzo-azaacene with Selective Near-Infrared Absorption and Visible Transparency. Chemistry 2020; 27:2065-2071. [PMID: 32978969 DOI: 10.1002/chem.202003925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Indexed: 12/26/2022]
Abstract
Organic compounds with selective near-infrared absorption and visible transparency are very desirable for fabrication of transparent/semitransparent optoelectronic devices. Herein, we develop a molecule with selective near-infrared absorption property, QBNA-O, in which four B←N units are incorporated to the core and two benzodioxin groups are introduced at the termini of the dibenzo-azaacene skeleton. QBNA-O exhibits a small optical gap of 1.39 eV due to the strong electron-donating benzodioxin groups and the strong electron-withdrawing B←N units. In toluene solution, QBNA-O shows a strong absorption peak at 856 nm with the full width at half maximum (FWHM) of only 41 nm as well as very weak absorption in the visible range from 380 nm to 760 nm. Thin films of QBNA-O exhibit the average visible transparency (AVT) of 78 % at the thickness of 205 nm and 90 % at the thickness of 45 nm. Solution-processed organic field-effect transistors (OFETs) of QBNA-O display ambipolar transporting behavior with the electron mobility of 0.52 cm2 V-1 s-1 and the hole mobility of 0.013 cm2 V-1 s-1 together with excellent air-stability. The selective NIR absorbing property and excellent charge transporting property imply that QBNA-O can be used to fabricate transparent organic optoelectronic devices.
Collapse
Affiliation(s)
- Yang Min
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Cao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.,University of Science and Technology of China, Hefei, 230023, China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
9
|
Ascherl JDR, Neiß C, Vogel A, Graf J, Rominger F, Oeser T, Hampel F, Görling A, Kivala M. Phosphorus-Containing Dibenzonaphthanthrenes: Electronic Fine Tuning of Polycyclic Aromatic Hydrocarbons through Organophosphorus Chemistry. Chemistry 2020; 26:13157-13162. [PMID: 32558004 PMCID: PMC7693108 DOI: 10.1002/chem.202002872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 02/03/2023]
Abstract
A concise synthetic route towards a new family of phosphorus-containing polycyclic aromatic hydrocarbons starting from the versatile acridophosphine has been established. The structural and optoelectronic properties of these compounds were efficiently modulated through derivatization of the phosphorus center. X-ray crystallographic analysis, UV/Vis spectroscopic, and electrochemical studies supported by DFT calculations identified the considerable potential of these scaffolds for the development of organophosphorus functional materials with tailored properties upon further functionalization.
Collapse
Affiliation(s)
- Johannes D. R. Ascherl
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Christian Neiß
- Department of Chemistry and PharmacyChair of Theoretical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Alexander Vogel
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| | - Jürgen Graf
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Thomas Oeser
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Hampel
- Department of Chemistry and PharmacyChair of Organic ChemistryUniversity of Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Andreas Görling
- Department of Chemistry and PharmacyChair of Theoretical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Milan Kivala
- Institute of Organic ChemistryRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced MaterialsRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
10
|
Ðorđević L, Valentini C, Demitri N, Mézière C, Allain M, Sallé M, Folli A, Murphy D, Mañas‐Valero S, Coronado E, Bonifazi D. O‐Doped Nanographenes: A Pyrano/Pyrylium Route Towards Semiconducting Cationic Mixed‐Valence Complexes. Angew Chem Int Ed Engl 2020; 59:4106-4114. [DOI: 10.1002/anie.201914025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/26/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Luka Ðorđević
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Cataldo Valentini
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Nicola Demitri
- Elettra—Sincrotrone Trieste S.S. 14 Km 163.5 in Area Science Park 34149 Basovizza, Trieste Italy
| | - Cécile Mézière
- MOLTECH-Anjou—UMR CNRS 6200, UNIV Angers, SFR Matrix 2 Boulevard Lavoisier 49045 Angers Cedex France
| | - Magali Allain
- MOLTECH-Anjou—UMR CNRS 6200, UNIV Angers, SFR Matrix 2 Boulevard Lavoisier 49045 Angers Cedex France
| | - Marc Sallé
- MOLTECH-Anjou—UMR CNRS 6200, UNIV Angers, SFR Matrix 2 Boulevard Lavoisier 49045 Angers Cedex France
| | - Andrea Folli
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Damien Murphy
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Samuel Mañas‐Valero
- Instituto de Ciencia Molecular Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular Universitat de València Catedrático José Beltrán 2 46980 Paterna Spain
| | - Davide Bonifazi
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
11
|
O‐Doped Nanographenes: A Pyrano/Pyrylium Route Towards Semiconducting Cationic Mixed‐Valence Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|