1
|
Li W, Kohne M, Warncke K. Reactivity Tracking of an Enzyme Progress Coordinate. J Phys Chem Lett 2023; 14:7157-7164. [PMID: 37540029 PMCID: PMC10440813 DOI: 10.1021/acs.jpclett.3c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The reactivity of individual solvent-coupled protein configurations is used to track and resolve the progress coordinate for the core reaction sequence of substrate radical rearrangement and hydrogen atom transfer in the ethanolamine ammonia-lyase (EAL) enzyme from Salmonella enterica. The first-order decay of the substrate radical intermediate is the monitored reaction. Heterogeneous confinement from sucrose hydrates in the mesophase solvent surrounding the cryotrapped protein introduces distributed kinetics in the non-native decay of the substrate radical pair capture substate, which arise from an ensemble of configurational microstates. Reaction rates increase by >103-fold across the distribution to approach that for the native enabled substate for radical rearrangement, which reacts with monotonic kinetics. The native progress coordinate thus involves a collapse of the configuration space to generate optimized reactivity. Reactivity tracking reveals fundamental features of solvent-protein-reaction configurational coupling and leads to a model that refines the ensemble paradigm of enzyme catalysis for strongly adiabatic chemical steps.
Collapse
Affiliation(s)
- Wei Li
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Meghan Kohne
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt Warncke
- Department
of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
3
|
Shibata N, Higuchi Y, Kräutler B, Toraya T. Structural Insights into the Very Low Activity of the Homocoenzyme B 12 Adenosylmethylcobalamin in Coenzyme B 12 -Dependent Diol Dehydratase and Ethanolamine Ammonia-Lyase. Chemistry 2022; 28:e202202196. [PMID: 35974426 DOI: 10.1002/chem.202202196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 11/11/2022]
Abstract
The X-ray structures of coenzyme B12 (AdoCbl)-dependent eliminating isomerases complexed with adenosylmethylcobalamin (AdoMeCbl) have been determined. As judged from geometries, the Co-C bond in diol dehydratase (DD) is not activated even in the presence of substrate. In ethanolamine ammonia-lyase (EAL), the bond is elongated in the absence of substrate; in the presence of substrate, the complex likely exists in both pre- and post-homolysis states. The impacts of incorporating an extra CH2 group are different in the two enzymes: the DD active site is flexible, and AdoMeCbl binding causes large conformational changes that make DD unable to adopt the catalytic state, whereas the EAL active site is rigid, and AdoMeCbl binding does not induce significant conformational changes. Such flexibility and rigidity of the active sites might reflect the tightness of adenine binding. The structures provide good insights into the basis of the very low activity of AdoMeCbl in these enzymes.
Collapse
Affiliation(s)
- Naoki Shibata
- Department of Life Science, Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297, Japan
| | - Bernhard Kräutler
- Institute of Organic Chemistry and, Center of Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama, 700-8530, Japan
| |
Collapse
|
4
|
Gruber K, Csitkovits V, Łyskowski A, Kratky C, Kräutler B. Structure-Based Demystification of Radical Catalysis by a Coenzyme B 12 Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues. Angew Chem Int Ed Engl 2022; 61:e202208295. [PMID: 35793207 PMCID: PMC9545868 DOI: 10.1002/anie.202208295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 12/04/2022]
Abstract
Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012 -fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMed-Graz8010GrazAustria
- Field of Excellence “BioHealth”University of Graz8010GrazAustria
| | - Vanessa Csitkovits
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Andrzej Łyskowski
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- Present address: Department of Biotechnology and BioinformaticsRzeszów University of Technologyal. Powstańców Warszawy 1235-959RzeszówPoland
| | - Christoph Kratky
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Center of Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
5
|
Gruber K, Csitkovits V, Łyskowski A, Kratky C, Kräutler B. Structure-Based Demystification of Radical Catalysis by a Coenzyme B 12 Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202208295. [PMID: 38505740 PMCID: PMC10947579 DOI: 10.1002/ange.202208295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 03/21/2024]
Abstract
Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012-fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMed-Graz8010GrazAustria
- Field of Excellence “BioHealth”University of Graz8010GrazAustria
| | - Vanessa Csitkovits
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Andrzej Łyskowski
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- Present address: Department of Biotechnology and BioinformaticsRzeszów University of Technologyal. Powstańców Warszawy 1235-959RzeszówPoland
| | - Christoph Kratky
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Center of Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
6
|
Kohne M, Li W, Ionescu A, Zhu C, Warncke K. Resolution and characterization of contributions of select protein and coupled solvent configurational fluctuations to radical rearrangement catalysis in coenzyme B 12-dependent ethanolamine ammonia-lyase. Methods Enzymol 2022; 669:229-259. [PMID: 35644173 PMCID: PMC9270175 DOI: 10.1016/bs.mie.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Coenzyme B12 (adenosylcobalamin) -dependent ethanolamine ammonia-lyase (EAL) is the signature enzyme in ethanolamine utilization metabolism associated with microbiome homeostasis and disease conditions in the human gut. The enzyme conducts a complex choreography of bond-making/bond-breaking steps that rearrange substrate to products through a radical mechanism, with themes common to other coenzyme B12-dependent and radical enzymes. The methods presented are targeted to test the hypothesis that particular, select protein and coupled solvent configurational fluctuations contribute to enzyme function. The general approach is to correlate enzyme function with an introduced perturbation that alters the properties (for example, degree of concertedness, or collectiveness) of protein and coupled solvent dynamics. Methods for sample preparation and low-temperature kinetic measurements by using temperature-step reaction initiation and time-resolved, full-spectrum electron paramagnetic resonance spectroscopy are detailed. A framework for interpretation of results obtained in ensemble systems under conditions of statistical equilibrium within the reacting, globally unstable state is presented. The temperature-dependence of the first-order rate constants for decay of the cryotrapped paramagnetic substrate radical state in EAL, through the chemical step of radical rearrangement, displays a piecewise-continuous Arrhenius dependence from 203 to 295K, punctuated by a kinetic bifurcation over 219-220K. The results reveal the obligatory contribution of a class of select collective protein and coupled solvent fluctuations to the interconversion of two resolved, sequential configurational substates, on the decay time scale. The select class of collective fluctuations also contributes to the chemical step. The methods and analysis are generally applicable to other coenzyme B12-dependent and related radical enzymes.
Collapse
Affiliation(s)
- Meghan Kohne
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Wei Li
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Alina Ionescu
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Chen Zhu
- Department of Physics, Emory University, Atlanta, GA, United States
| | - Kurt Warncke
- Department of Physics, Emory University, Atlanta, GA, United States.
| |
Collapse
|
7
|
Bilić L, Barić D, Sandala GM, Smith DM, Kovačević B. Glycerol as a Substrate and Inactivator of Coenzyme B 12 -Dependent Diol Dehydratase. Chemistry 2021; 27:7930-7941. [PMID: 33792120 DOI: 10.1002/chem.202100416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/09/2022]
Abstract
Diol dehydratase, dependent on coenzyme B12 (B12 -dDDH), displays a peculiar feature of being inactivated by its native substrate glycerol (GOL). Surprisingly, the isofunctional enzyme, B12 -independent glycerol dehydratase (B12 -iGDH), does not undergo suicide inactivation by GOL. Herein we present a series of QM/MM and MD calculations aimed at understanding the mechanisms of substrate-induced suicide inactivation in B12 -dDDH and that of resistance of B12 -iGDH to inactivation. We show that the first step in the enzymatic transformation of GOL, hydrogen abstraction, can occur from both ends of the substrate (either C1 or C3 of GOL). Whereas C1 abstraction in both enzymes leads to product formation, C3 abstraction in B12 -dDDH results in the formation of a low energy radical intermediate, which is effectively trapped within a deep well on the potential energy surface. The long lifetime of this radical intermediate likely enables its side reactions, leading to inactivation. In B12 -iGDH, by comparison, C3 abstraction is an endothermic step; consequently, the resultant radical intermediate is not of low energy, and the reverse process of reforming the reactant is possible.
Collapse
Affiliation(s)
- Luka Bilić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.,PULS Group, Institute for Theoretical Physics FAU Erlangen-Nürnberg, Staudtstraße 7, Erlangen, Germany
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Gregory M Sandala
- Department of Chemistry and Biochemistry, Mount Allison University, New Brunswick, E4L 1G8, Sackville, Canada
| | - David Mathew Smith
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Borislav Kovačević
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
8
|
Nasir A, Ashok S, Shim JY, Park S, Yoo TH. Recent Progress in the Understanding and Engineering of Coenzyme B 12-Dependent Glycerol Dehydratase. Front Bioeng Biotechnol 2020; 8:500867. [PMID: 33224925 PMCID: PMC7674605 DOI: 10.3389/fbioe.2020.500867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Coenzyme B12-dependent glycerol dehydratase (GDHt) catalyzes the dehydration reaction of glycerol in the presence of adenosylcobalamin to yield 3-hydroxypropanal (3-HPA), which can be converted biologically to versatile platform chemicals such as 1,3-propanediol and 3-hydroxypropionic acid. Owing to the increased demand for biofuels, developing biological processes based on glycerol, which is a byproduct of biodiesel production, has attracted considerable attention recently. In this review, we will provide updates on the current understanding of the catalytic mechanism and structure of coenzyme B12-dependent GDHt, and then summarize the results of engineering attempts, with perspectives on future directions in its engineering.
Collapse
Affiliation(s)
- Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | | | - Jeung Yeop Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea.,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|