1
|
Dess-Martin Periodinane-Mediated Oxidative Coupling Reaction of Isoquinoline with Benzyl Bromide. Molecules 2023; 28:molecules28030923. [PMID: 36770590 PMCID: PMC9919522 DOI: 10.3390/molecules28030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Dess-Martin periodinane (DMP) is a broadly applicable oxidant in chemical synthesis. In this work, an efficient and convenient synthesis of N-substituted isoquinolinone derivatives mediated by DMP was achieved through the oxidative coupling reaction of functionalized isoquinoline with readily available benzyl bromide, which is a metal-free, mild, and practical method for synthesizing isoquinoline-1,3-dione or isoquinoline-1,3,4-trione derivatives in excellent yields. The H2O18-labeling experiment was performed to gain insight into the possible mechanism for this reaction.
Collapse
|
2
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment I. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
3
|
Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Progress in organocatalysis with hypervalent iodine catalysts. Chem Soc Rev 2022; 51:8102-8139. [PMID: 36063409 DOI: 10.1039/d2cs00206j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine compounds as environmentally friendly and relatively inexpensive reagents have properties similar to transition metals. They are employed as alternatives to transition metal catalysts in organic synthesis as mild, nontoxic, selective and recyclable catalytic reagents. Formation of C-N, C-O, C-S, C-F and C-C bonds can be seamlessly accomplished by hypervalent iodine catalysed oxidative functionalisations. The aim of this review is to highlight recent developments in the utilisation of iodine(III) and iodine(V) catalysts in the synthesis of a wide range of organic compounds including chiral catalysts for stereoselective synthesis. Polymer-, magnetic nanoparticle- and metal organic framework-supported hypervalent iodine catalysts are also described.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Samata E Shetgaonkar
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Manjula Krishnan
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University 410082 Changsha China
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Arnar Guðmundsson
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry Arrhenius Laboratory Stockholm University SE-10691 Stockholm Sweden
- Department of Natural Sciences Mid Sweden University Holmgatan 10 SE-85170 Sundsvall Sweden
| |
Collapse
|
5
|
Liu J, Guðmundsson A, Bäckvall J. Efficient Aerobic Oxidation of Organic Molecules by Multistep Electron Transfer. Angew Chem Int Ed Engl 2021; 60:15686-15704. [PMID: 33368909 PMCID: PMC9545650 DOI: 10.1002/anie.202012707] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 12/17/2022]
Abstract
This Minireview presents recent important homogenous aerobic oxidative reactions which are assisted by electron transfer mediators (ETMs). Compared with direct oxidation by molecular oxygen (O2 ), the use of a coupled catalyst system with ETMs leads to a lower overall energy barrier via stepwise electron transfer. This cooperative catalytic process significantly facilitates the transport of electrons from the reduced form of the substrate-selective redox catalyst (SSRCred ) to O2 , thereby increasing the efficiency of the aerobic oxidation. In this Minireview, we have summarized the advances accomplished in recent years in transition-metal-catalyzed as well as metal-free aerobic oxidations of organic molecules in the presence of ETMs. In addition, the recent progress of photochemical and electrochemical oxidative functionalization using ETMs and O2 as the terminal oxidant is also highlighted. Furthermore, the mechanisms of these transformations are showcased.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University410082ChangshaChina
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Arnar Guðmundsson
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm UniversitySE-10691StockholmSweden
- Department of Natural SciencesMid Sweden UniversityHolmgatan 10SE-85170SundsvallSweden
| |
Collapse
|
6
|
Habert L, Cariou K. Photoinduced Aerobic Iodoarene-Catalyzed Spirocyclization of N-Oxy-amides to N-Fused Spirolactams*. Angew Chem Int Ed Engl 2021; 60:171-175. [PMID: 32956546 DOI: 10.1002/anie.202009175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/31/2020] [Indexed: 12/18/2022]
Abstract
Iodoarene catalysis is a powerful methodology that usually requires an excess of oxidant, or of redox mediator if the terminal oxidant is dioxygen, to generate the key hypervalent iodine intermediate to proceed efficiently. We report that, using the spiro-cyclization of amides as a benchmark reaction, aerobic iodoarene catalysis can be enabled by relying on a pyrylium photocatalyst under blue light irradiation. This unprecedented dual organocatalytic system allows the use of low catalytic loading of both catalysts under very mild operating conditions.
Collapse
Affiliation(s)
- Loïc Habert
- Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Université Paris-Saclay, CNRS, 1, avenue de la Terrasse, 91198, Gif-sur-Yvette, France.,Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, 11, rue Pierre et Marie Curie, 75005, Paris, France
| | - Kevin Cariou
- Institut de Chimie des Substances Naturelles, LabEx LERMIT, UPR 2301, Université Paris-Saclay, CNRS, 1, avenue de la Terrasse, 91198, Gif-sur-Yvette, France.,Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, 11, rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
7
|
Habert L, Cariou K. Photoinduced Aerobic Iodoarene‐Catalyzed Spirocyclization of
N
‐Oxy‐amides to N‐Fused Spirolactams**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Loïc Habert
- Institut de Chimie des Substances Naturelles LabEx LERMIT, UPR 2301 Université Paris-Saclay CNRS 1, avenue de la Terrasse 91198 Gif-sur-Yvette France
- Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology Chimie ParisTech PSL University CNRS 11, rue Pierre et Marie Curie 75005 Paris France
| | - Kevin Cariou
- Institut de Chimie des Substances Naturelles LabEx LERMIT, UPR 2301 Université Paris-Saclay CNRS 1, avenue de la Terrasse 91198 Gif-sur-Yvette France
- Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology Chimie ParisTech PSL University CNRS 11, rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
8
|
Paul S, Bhakat M, Guin J. Radical C−H Acylation of Nitrogen Heterocycles Induced by an Aerobic Oxidation of Aldehydes. Chem Asian J 2019; 14:3154-3160. [DOI: 10.1002/asia.201900857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Subhasis Paul
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| | - Manotosh Bhakat
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| | - Joyram Guin
- School of Chemical SciencesIndian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata- 700032 India
| |
Collapse
|
9
|
Chauhan J, Ravva MK, Sen S. Harnessing Autoxidation of Aldehydes: In Situ Iodoarene Catalyzed Synthesis of Substituted 1,3,4-Oxadiazole, in the Presence of Molecular Oxygen. Org Lett 2019; 21:6562-6565. [PMID: 31368711 DOI: 10.1021/acs.orglett.9b02542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Isobutyraldehyde underwent auto-oxidation in the presence of molecular oxygen to generate an acyloxy radical under a "metal-free" environment. They were subsequently exploited in situ to afford hypervalent iodines with p-anisolyl iodide which generated substituted 1,3,4-oxadiazoles in moderate to excellent yields from N'-arylidene acetohydrazides. The reaction strategy tolerated diverse substitution on the hydrazide substrates. Control experiments and literature precedence supported the formation of an in situ iodosylarene complex that facilitates the formation of products.
Collapse
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry, School of Natural Sciences , Shiv Nadar University , Dadri, Chithera, Gautambudh Nagar , Uttar Pradesh 201314 , India
| | - Mahesh K Ravva
- Department of Chemistry , SRM University-AP , Amaravati , Andhra Pradesh 522502 , India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences , Shiv Nadar University , Dadri, Chithera, Gautambudh Nagar , Uttar Pradesh 201314 , India
| |
Collapse
|