1
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
2
|
Kumar S, Kajol K, Nayak P, Kumar A, Ramesh C. Synthesis of tetracyclic 4H-benzo[5,6]chromeno[3,4-d]oxazoles via palladium-catalyzed intramolecular direct heteroarylation. Chem Asian J 2023; 18:e202201151. [PMID: 36519340 DOI: 10.1002/asia.202201151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We report a palladium-catalyzed intramolecular direct heteroarylation of oxazole tethered β-naphthols to access corresponding tetracyclic 4H-benzo[5,6]chromeno[3,4-d]oxazoles. Various functional groups are well tolerated and furnished the desired products in good to excellent yields under the present reaction conditions. The scale-up reaction and synthetic utility of the resulting molecules have been demonstrated. Moreover, UV/vis absorption and fluorescence emission properties have been evaluated for these polyheterocyclic compounds.
Collapse
Affiliation(s)
- Sujeet Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute BS-10/1, Sector 10 Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Km Kajol
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute BS-10/1, Sector 10 Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Prakash Nayak
- School of Chemical Sciences National Institute of Science Education and Research (NISER), Bhubaneswar, HBNI, Bhubaneswar, 752050, Odisha, India
| | - Amit Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute BS-10/1, Sector 10 Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, New Delhi, 110001, India
| | - Chintakunta Ramesh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute BS-10/1, Sector 10 Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, New Delhi, 110001, India
| |
Collapse
|
3
|
Zheng X, Shen Q, Yin C, Li L, Zhong T, Yu C. Photoinduced Three‐Component Difluoroamidosulfonylation/Bicyclization: Regioselectivity Synthesis of Seven‐Membered Dibenzosultams. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiangyun Zheng
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Qitao Shen
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Lianghao Li
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
4
|
Kanai Y, Müller‐Borges D, Plenio H. The Regioselective Arylation of 1,3‐Benzodioxoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuki Kanai
- Organometallic Chemistry Technische Universität Darmstadt Alarich-Weiss-Str. 12 64287 Darmstadt Germany
| | - Dorian Müller‐Borges
- Organometallic Chemistry Technische Universität Darmstadt Alarich-Weiss-Str. 12 64287 Darmstadt Germany
| | - Herbert Plenio
- Organometallic Chemistry Technische Universität Darmstadt Alarich-Weiss-Str. 12 64287 Darmstadt Germany
| |
Collapse
|
5
|
Iwata T, Kumagai S, Yoshinaga T, Hanada M, Shiota Y, Yoshizawa K, Shindo M. Quadruple Role of Pd Catalyst in Domino Reaction Involving Aryl to Alkyl 1,5-Pd Migration to Access 1,9-Bridged Triptycenes. Chemistry 2021; 27:11548-11553. [PMID: 34125459 DOI: 10.1002/chem.202101728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Indexed: 12/21/2022]
Abstract
A Pd-catalyzed domino reaction of 1,8,13-tribromo-9-methoxytriptycenes is reported. Under conventional Suzuki coupling conditions, the triptycenes underwent multiple transformations to give 1,9-bridged triptycenes. Based on mechanistic investigations, a single Pd catalyst functions as Pd0 , PdII and PdIV species to catalyze four distinct processes: (1) aryl to alkyl 1,5-Pd migration, (2) intramolecular arylation, (3) homocoupling of phenylboronic acid and (4) Suzuki coupling. DFT calculations revealed that 1,5-Pd migration likely proceeds via both concerted PdII and stepwise PdIV routes. Asymmetric synthesis of the chiral triptycenes, as well as optical resolution, and further transformation are also reported.
Collapse
Affiliation(s)
- Takayuki Iwata
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Satoru Kumagai
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Tatsuro Yoshinaga
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Masato Hanada
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| |
Collapse
|