1
|
Mondal A, van Gemmeren M. Silver-Free C-H Activation: Strategic Approaches towards Realizing the Full Potential of C-H Activation in Sustainable Organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210825. [PMID: 36062882 PMCID: PMC9828228 DOI: 10.1002/anie.202210825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/12/2023]
Abstract
The activation of carbon-hydrogen bonds is considered as one of the most attractive techniques in synthetic organic chemistry because it bears the potential to shorten synthetic routes as well as to produce complementary product scopes compared to traditional synthetic strategies. However, many current methods employ silver salts as additives, leading to stoichiometric metal waste and thereby preventing the full potential of C-H activation to be exploited. Therefore, the development of silver-free protocols has recently received increasing attention. Mechanistically, silver can serve various roles in C-H activation and thus, avoiding the use of silver requires different approaches based on the role it serves in a given process. In this Review, we present the comparison of silver-based and silver-free methods. Focusing on the strategic approaches to develop silver-free C-H activation, we provide the reader with the means to develop sustainable methods for C-H activation.
Collapse
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
2
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O-Ligand Promoted meta-C-H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022; 61:e202201750. [PMID: 35639463 PMCID: PMC9401001 DOI: 10.1002/anie.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/07/2022]
Abstract
Reversing the conventional site-selectivity of C-H activation processes provides new retrosynthetic disconnections to otherwise unreactive bonds. Here, we report a new catalytic system based on palladium/norbornene and an S,O-ligand for the meta-C-H arylation of aryl ethers that significantly outperforms previously reported systems. We demonstrate the unique ability of this system to employ alkoxyarene substrates bearing electron donating and withdrawing substituents. Additionally, ortho-substituted aryl ethers are well tolerated, overcoming the "ortho constraint", which is the necessity to have a meta-substituent on the alkoxyarene to achieve high reaction efficiency, by enlisting novel norbornene mediators. Remarkably, for the first time the monoarylation of alkoxyarenes is achieved efficiently enabling the subsequent introduction of a second, different aryl coupling partner to rapidly furnish unsymmetrical terphenyls. Further insight into the reaction mechanism was achieved by isolation and characterization of some Pd-complexes-before and after meta C-H activation-prior to evaluation of their respective catalytic activities.
Collapse
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
3
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O‐Ligand Promoted
meta
‐C−H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
4
|
Evans KJ, Morton PA, Luz C, Miller C, Raine O, Lynam JM, Mansell SM. Rhodium Indenyl NHC and Fluorenyl-Tethered NHC Half-Sandwich Complexes: Synthesis, Structures and Applications in the Catalytic C-H Borylation of Arenes and Alkanes. Chemistry 2021; 27:17824-17833. [PMID: 34653269 PMCID: PMC9299238 DOI: 10.1002/chem.202102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 01/11/2023]
Abstract
Indenyl (Ind) rhodium N-heterocyclic carbene (NHC) complexes [Rh(η5 -Ind)(NHC)(L)] were synthesised for 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr) with L=C2 H4 (1), CO (2 a) and cyclooctene (COE; 3), for 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene (SIMes) with L=CO (2 b) and COE (4), and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) with L=CO (2 c) and COE (5). Reaction of SIPr with [Rh(Cp*)(C2 H4 )2 ] did not give the desired SIPr complex, thus demonstrating the "indenyl effect" in the synthesis of 1. Oxidative addition of HSi(OEt)3 to 3 proceeded under mild conditions to give the Rh silyl hydride complex [Rh(Ind){Si(OEt)3 }(H)(SIPr)] (6) with loss of COE. Tethered-fluorenyl NHC rhodium complexes [Rh{(η5 -C13 H8 )C2 H4 N(C)C2 Hx NR}(L)] (x=4, R=Dipp, L=C2 H4 : 11; L=COE: 12; L=CO: 13; R=Mes, L=COE: 14; L=CO: 15; x=2, R=Me, L=COE: 16; L=CO: 17) were synthesised in low yields (5-31 %) in comparison to good yields for the monodentate complexes (49-79 %). Compounds 3 and 1, which contain labile alkene ligands, were successful catalysts for the catalytic borylation of benzene with B2 pin2 (Bpin=pinacolboronate, 97 and 93 % PhBpin respectively with 5 mol % catalyst, 24 h, 80 °C), with SIPr giving a more active catalyst than SIMes or IMes. Fluorenyl-tethered NHC complexes were much less active as borylation catalysts, and the carbonyl complexes were inactive. The borylation of toluene, biphenyl, anisole and diphenyl ether proceeded to give meta substitutions as the major product, with smaller amounts of para substitution and almost no ortho product. The borylation of octane and decane with B2 pin2 at 120 and 140 °C, respectively, was monitored by 11 B NMR spectroscopy, which showed high conversions into octyl and decylBpin over 4-7 days, thus demonstrating catalysed sp3 C-H borylation with new piano stool rhodium indenyl complexes. Irradiation of the monodentate complexes with 400 or 420 nm light confirmed the ready dissociation of C2 H4 and COE ligands, whereas CO complexes were inert. Evidence for C-H bond activation in the alkyl groups of the NHC ligands was obtained.
Collapse
Affiliation(s)
- Kieren J. Evans
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Paul A. Morton
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Christian Luz
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Callum Miller
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Olivia Raine
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH14 4ASUK
| | - Jason M. Lynam
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | | |
Collapse
|
5
|
Suseelan Sarala A, Bhowmick S, Carvalho RL, Al‐Thabaiti SA, Mokhtar M, Silva Júnior EN, Maiti D. Transition‐Metal‐Catalyzed Selective Alkynylation of C−H Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anjana Suseelan Sarala
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
- Department of Chemistry Saarland University 66123 Saarbrucken Germany
| | - Suman Bhowmick
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| | - Renato L. Carvalho
- Department of Chemistry Federal University of Minas Gerais 31270-901 Belo Horizonte MG Brazil
| | | | - Mohamed Mokhtar
- Chemistry Department Faculty of Science King Abdulaziz University 21589 Jeddah Saudi Arabia
| | | | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| |
Collapse
|
6
|
Sukowski V, Jia W, Diest R, Borselen M, Fernández‐Ibáñez MÁ. S,O‐Ligand‐Promoted Pd‐Catalyzed C−H Olefination of Anisole Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wen‐Liang Jia
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Rianne Diest
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Manuela Borselen
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
7
|
Wedi P, Farizyan M, Bergander K, Mück-Lichtenfeld C, van Gemmeren M. Mechanism of the Arene-Limited Nondirected C-H Activation of Arenes with Palladium*. Angew Chem Int Ed Engl 2021; 60:15641-15649. [PMID: 33998116 PMCID: PMC8361776 DOI: 10.1002/anie.202105092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Indexed: 01/11/2023]
Abstract
Recently palladium catalysts have been discovered that enable the directing-group-free C-H activation of arenes without requiring an excess of the arene substrate, thereby enabling methods for the late-stage modification of complex organic molecules. The key to success has been the use of two complementary ligands, an N-acyl amino acid and an N-heterocycle. Detailed experimental and computational mechanistic studies on the dual-ligand-enabled C-H activation of arenes have led us to identify the catalytically active species and a transition state model that explains the exceptional activity and selectivity of these catalysts. These findings are expected to be highly useful for further method development using this powerful class of catalysts.
Collapse
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Mirxan Farizyan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
8
|
Wedi P, Farizyan M, Bergander K, Mück‐Lichtenfeld C, Gemmeren M. Mechanismus der Aren‐limitierten, nicht‐dirigierten C‐H‐Aktivierung von Arenen mit Palladium**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Mirxan Farizyan
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Klaus Bergander
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| |
Collapse
|
9
|
Fawcett A, Keller MJ, Herrera Z, Hartwig JF. Site Selective Chlorination of C(sp 3 )-H Bonds Suitable for Late-Stage Functionalization. Angew Chem Int Ed Engl 2021; 60:8276-8283. [PMID: 33480134 DOI: 10.1002/anie.202016548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Indexed: 01/18/2023]
Abstract
C(sp3 )-Cl bonds are present in numerous biologically active small molecules, and an ideal route for their preparation is by the chlorination of a C(sp3 )-H bond. However, most current methods for the chlorination of C(sp3 )-H bonds are insufficiently site selective and tolerant of functional groups to be applicable to the late-stage functionalization of complex molecules. We report a method for the highly selective chlorination of tertiary and benzylic C(sp3 )-H bonds to produce the corresponding chlorides, generally in high yields. The reaction occurs with a mixture of an azidoiodinane, which generates a selective H-atom abstractor under mild conditions, and a readily-accessible and inexpensive copper(II) chloride complex, which efficiently transfers a chlorine atom. The reaction's exceptional functional group tolerance is demonstrated by the chlorination of >30 diversely functionalized substrates and the late-stage chlorination of a dozen derivatives of natural products and active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Alexander Fawcett
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - M Josephine Keller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Zachary Herrera
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Fawcett A, Keller MJ, Herrera Z, Hartwig JF. Site Selective Chlorination of C(sp
3
)−H Bonds Suitable for Late‐Stage Functionalization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Fawcett
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - M. Josephine Keller
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Zachary Herrera
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
11
|
Garçon M, Mun NW, White AJP, Crimmin MR. Palladium-Catalysed C-H Bond Zincation of Arenes: Scope, Mechanism, and the Role of Heterometallic Intermediates. Angew Chem Int Ed Engl 2021; 60:6145-6153. [PMID: 33275830 DOI: 10.1002/anie.202014960] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 11/06/2022]
Abstract
Catalytic methods that transform C-H bonds into C-X bonds are of paramount importance in synthesis. A particular focus has been the generation of organoboranes, organosilanes and organostannanes from simple hydrocarbons (X=B, Si, Sn). Despite the importance of organozinc compounds (X=Zn), their synthesis by the catalytic functionalisation of C-H bonds remains unknown. Herein, we show that a palladium catalyst and zinc hydride reagent can be used to transform C-H bonds into C-Zn bonds. The new catalytic C-H zincation protocol has been applied to a variety of arenes-including fluoroarenes, heteroarenes, and benzene-with high chemo- and regioselectivity. A mechanistic study shows that heterometallic Pd-Zn complexes play a key role in catalysis. The conclusions of this work are twofold; the first is that valuable organozinc compounds are finally accessible by catalytic C-H functionalisation, the second is that heterometallic complexes are intimately involved in bond-making and bond-breaking steps of C-H functionalisation.
Collapse
Affiliation(s)
- Martí Garçon
- Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Nicolette Wee Mun
- Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Andrew J P White
- Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| | - Mark R Crimmin
- Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, Shepherds Bush, London, W12 0BZ, UK
| |
Collapse
|
12
|
Garçon M, Mun NW, White AJP, Crimmin MR. Palladium‐Catalysed C−H Bond Zincation of Arenes: Scope, Mechanism, and the Role of Heterometallic Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martí Garçon
- Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane, Shepherds Bush London W12 0BZ UK
| | - Nicolette Wee Mun
- Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane, Shepherds Bush London W12 0BZ UK
| | - Andrew J. P. White
- Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane, Shepherds Bush London W12 0BZ UK
| | - Mark R. Crimmin
- Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane, Shepherds Bush London W12 0BZ UK
| |
Collapse
|
13
|
Chen H, Farizyan M, Gemmeren M. Regioselective Olefination of 3‐Substituted Five‐Membered Heteroarenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hao Chen
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Mirxan Farizyan
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Organisch‐Chemisches Institut Westfälische Wilhelms‐Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
14
|
Chen H, Farizyan M, Ghiringhelli F, van Gemmeren M. Sterically Controlled C-H Olefination of Heteroarenes. Angew Chem Int Ed Engl 2020; 59:12213-12220. [PMID: 32267990 PMCID: PMC7384109 DOI: 10.1002/anie.202004521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 01/06/2023]
Abstract
The regioselective functionalization of heteroarenes is a highly attractive synthetic target due to the prevalence of multiply substituted heteroarenes in nature and bioactive compounds. Some substitution patterns remain challenging: While highly efficient methods for the C2-selective olefination of 3-substituted five-membered heteroarenes have been reported, analogous methods to access the 5-olefinated products have remained limited by poor regioselectivities and/or the requirement to use an excess of the valuable heteroarene starting material. Herein we report a sterically controlled C-H olefination using heteroarenes as the limiting reagent. The method enables the highly C5-selective olefination of a wide range of heteroarenes and is shown to be useful in the context of late-stage functionalization.
Collapse
Affiliation(s)
- Hao Chen
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Mirxan Farizyan
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Francesca Ghiringhelli
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Manuel van Gemmeren
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
15
|
Chen H, Farizyan M, Ghiringhelli F, Gemmeren M. Sterically Controlled C−H Olefination of Heteroarenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004521] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hao Chen
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Mirxan Farizyan
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Francesca Ghiringhelli
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Manuel Gemmeren
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
16
|
Karmel C, Rubel CZ, Kharitonova EV, Hartwig JF. Iridium-Catalyzed Silylation of Five-Membered Heteroarenes: High Sterically Derived Selectivity from a Pyridyl-Imidazoline Ligand. Angew Chem Int Ed Engl 2020; 59:6074-6081. [PMID: 31968139 PMCID: PMC11723506 DOI: 10.1002/anie.201916015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Indexed: 11/09/2022]
Abstract
The steric effects of substituents on five-membered rings are less pronounced than those on six-membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five-membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C-H bonds, have been poor in many cases. We report that the silylation of five-membered-ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5-cyclooctadiene) and a phenanthroline ligand or a new pyridyl-imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C-H bonds of these rings under conditions that the borylation of C-H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross-coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents.
Collapse
Affiliation(s)
- Caleb Karmel
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Camille Z Rubel
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | | | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
17
|
Qiu Y, Scheremetjew A, Finger LH, Ackermann L. Electrophotocatalytic Undirected C-H Trifluoromethylations of (Het)Arenes. Chemistry 2020; 26:3241-3246. [PMID: 31875327 PMCID: PMC7155051 DOI: 10.1002/chem.201905774] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/31/2022]
Abstract
Electrophotochemistry has enabled arene C-H trifluoromethylation with the Langlois reagent CF3 SO2 Na under mild reaction conditions. The merger of electrosynthesis and photoredox catalysis provided a chemical oxidant-free approach for the generation of the CF3 radical. The electrophotochemistry was carried out in an operationally simple manner, setting the stage for challenging C-H trifluoromethylations of unactivated arenes and heteroarenes. The robust nature of the electrophotochemical manifold was reflected by a wide scope, including electron-rich and electron-deficient benzenes, as well as naturally occurring heteroarenes. Electrophotochemical C-H trifluoromethylation was further achieved in flow with a modular electro-flow-cell equipped with an in-operando monitoring unit for on-line flow-NMR spectroscopy, providing support for the single electron transfer processes.
Collapse
Affiliation(s)
- Youai Qiu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Alexej Scheremetjew
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lars H. Finger
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
18
|
Karmel C, Rubel CZ, Kharitonova EV, Hartwig JF. Iridium-Catalyzed Silylation of Five-Membered Heteroarenes: High Sterically Derived Selectivity from a Pyridyl-Imidazoline Ligand. ACTA ACUST UNITED AC 2020; 132:6130-6137. [PMID: 33071367 DOI: 10.1002/ange.201916015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The steric effects of substituents on five-membered rings are less pronounced than those on six-membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions that occur with selectivities dictated by steric effects, such as the borylation of C-H bonds, have been poor in many cases. We report that the silylation of five-membered ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 and a phenanthroline ligand or a new pyridyl-imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C-H bonds of these rings under conditions that the borylation of C-H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross-coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl and perfluoroalkyl substituents.
Collapse
Affiliation(s)
- Caleb Karmel
- Department of Chemistry, University of California, Berkeley, CA, 94720 USA
| | - Camille Z Rubel
- Department of Chemistry, University of California, Berkeley, CA, 94720 USA
| | | | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, 94720 USA
| |
Collapse
|
19
|
Ma B, Wu P, Wang X, Wang Z, Lin H, Dai H. Efficient Synthesis of Spirooxindole Pyrrolones by a Rhodium(III)‐Catalyzed C−H Activation/Carbene Insertion/Lossen Rearrangement Sequence. Angew Chem Int Ed Engl 2019; 58:13335-13339. [DOI: 10.1002/anie.201906589] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Biao Ma
- Chinese Academy of Sciences Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai 201203 China
| | - Peng Wu
- Department of ChemistryInnovative Drug Research CenterShanghai University 99 Shangda Road Shanghai 200444 China
| | - Xing Wang
- Chinese Academy of Sciences Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai 201203 China
| | - Zhengyu Wang
- Chinese Academy of Sciences Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai 201203 China
| | - Hai‐Xia Lin
- Department of ChemistryInnovative Drug Research CenterShanghai University 99 Shangda Road Shanghai 200444 China
| | - Hui‐Xiong Dai
- Chinese Academy of Sciences Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai 201203 China
- Stake Key Laboratory of Natural and Biomimetic DrugsPeking University Beijing 100191 China
| |
Collapse
|
20
|
Brand S, Elsen H, Langer J, Grams S, Harder S. Calcium-Catalyzed Arene C-H Bond Activation by Low-Valent Al I. Angew Chem Int Ed Engl 2019; 58:15496-15503. [PMID: 31465144 PMCID: PMC6856855 DOI: 10.1002/anie.201908978] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/18/2019] [Indexed: 12/22/2022]
Abstract
The low‐valent ß‐diketiminate complex (DIPPBDI)Al is stable in benzene but addition of catalytic quantities of [(DIPPBDI)CaH]2 at 20 °C led to (DIPPBDI)Al(Ph)H (DIPPBDI=CH[C(CH3)N‐DIPP]2, DIPP=2,6‐diisopropylphenyl). Similar Ca‐catalyzed C−H bond activation is demonstrated for toluene or p‐xylene. For toluene a remarkable selectivity for meta‐functionalization has been observed. Reaction of (DIPPBDI)Al(m‐tolyl)H with I2 gave m‐tolyl iodide, H2 and (DIPPBDI)AlI2 which was recycled to (DIPPBDI)Al. Attempts to catalyze this reaction with Mg or Zn hydride catalysts failed. Instead, the highly stable complexes (DIPPBDI)Al(H)M(DIPPBDI) (M=Mg, Zn) were formed. DFT calculations on the Ca hydride catalyzed arene alumination suggest that a similar but more loosely bound complex is formed: (DIPPBDI)Al(H)Ca(DIPPBDI). This is in equilibrium with the hydride bridged complex (DIPPBDI)Al(μ‐H)Ca(DIPPBDI) which shows strongly increased electron density at Al. The combination of Ca‐arene bonding and a highly nucleophilic Al center are key to facile C−H bond activation.
Collapse
Affiliation(s)
- Steffen Brand
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Holger Elsen
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Samuel Grams
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry, Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|
21
|
|
22
|
Shishido R, Sasaki I, Seki T, Ishiyama T, Ito H. Direct Dimesitylborylation of Benzofuran Derivatives by an Iridium-Catalyzed C-H Activation with Silyldimesitylborane. Chemistry 2019; 25:12924-12928. [PMID: 31432548 DOI: 10.1002/chem.201903776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Indexed: 12/23/2022]
Abstract
Direct dimesitylborylation of benzofuran derivatives by a C-H activation catalyzed by an iridium(I)/N-heterocyclic carbene (NHC) complex in the presence of Ph2 MeSi-BMes2 afforded the corresponding dimesitylborylation products in good to high yield with excellent regioselectivity. This method provides a straightforward route to donor-(π-spacer)-acceptor systems with intriguing solvatochromic luminescence properties.
Collapse
Affiliation(s)
- Ryosuke Shishido
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Ikuo Sasaki
- Department of Chemistry and Bioscience, Faculty of Science and Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Tomohiro Seki
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICRD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| | - Tatsuo Ishiyama
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICRD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
23
|
Ma B, Wu P, Wang X, Wang Z, Lin H, Dai H. Efficient Synthesis of Spirooxindole Pyrrolones by a Rhodium(III)‐Catalyzed C−H Activation/Carbene Insertion/Lossen Rearrangement Sequence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Biao Ma
- Chinese Academy of Sciences Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai 201203 China
| | - Peng Wu
- Department of ChemistryInnovative Drug Research CenterShanghai University 99 Shangda Road Shanghai 200444 China
| | - Xing Wang
- Chinese Academy of Sciences Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai 201203 China
| | - Zhengyu Wang
- Chinese Academy of Sciences Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai 201203 China
| | - Hai‐Xia Lin
- Department of ChemistryInnovative Drug Research CenterShanghai University 99 Shangda Road Shanghai 200444 China
| | - Hui‐Xiong Dai
- Chinese Academy of Sciences Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica Shanghai 201203 China
- Stake Key Laboratory of Natural and Biomimetic DrugsPeking University Beijing 100191 China
| |
Collapse
|
24
|
Jakoobi M, Sergeev AG. Transition‐Metal‐Mediated Cleavage of C−C Bonds in Aromatic Rings. Chem Asian J 2019; 14:2181-2192. [PMID: 31051048 DOI: 10.1002/asia.201900443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Martin Jakoobi
- Department of ChemistryUniversity of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| | - Alexey G. Sergeev
- Department of ChemistryUniversity of Liverpool Crown Street Liverpool L69 7ZD United Kingdom
| |
Collapse
|
25
|
Jiao B, Peng Z, Dai ZH, Li L, Wang H, Zhou MD. Palladium-Catalyzed meta
-Selective C-H Alkenylation and Acetoxylation of Arylacetic Acid Using a Pyrimidine Template. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bo Jiao
- Liaoning Shihua University; School of Chemistry and Materials Science; Dandong Road 1 113001 Fushun P. R. China
| | - Zhen Peng
- Liaoning Shihua University; School of Chemistry and Materials Science; Dandong Road 1 113001 Fushun P. R. China
| | - Zhen-Hua Dai
- Liaoning Shihua University; School of Chemistry and Materials Science; Dandong Road 1 113001 Fushun P. R. China
| | - Lei Li
- Liaoning Shihua University; School of Chemistry and Materials Science; Dandong Road 1 113001 Fushun P. R. China
| | - He Wang
- Liaoning Shihua University; School of Chemistry and Materials Science; Dandong Road 1 113001 Fushun P. R. China
| | - Ming-Dong Zhou
- Liaoning Shihua University; School of Chemistry and Materials Science; Dandong Road 1 113001 Fushun P. R. China
| |
Collapse
|
26
|
Li Z, Duan W. Palladium‐Catalyzed C−H Alkenylation of Arenes with Alkynes: Stereoselective Synthesis of Vinyl Chlorides via a 1,4‐Chlorine Migration. Angew Chem Int Ed Engl 2018; 57:16041-16045. [DOI: 10.1002/anie.201808866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Zhen Li
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
| | - Wei‐Liang Duan
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
27
|
Li Z, Duan W. Palladium‐Catalyzed C−H Alkenylation of Arenes with Alkynes: Stereoselective Synthesis of Vinyl Chlorides via a 1,4‐Chlorine Migration. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Li
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
| | - Wei‐Liang Duan
- College of Chemistry and Chemical EngineeringYangzhou University 180 Siwangting Road Yangzhou 225002 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|