Lisnyak VG, Lynch-Colameta T, Snyder SA. Mannich-type Reactions of Cyclic Nitrones: Effective Methods for the Enantioselective Synthesis of Piperidine-containing Alkaloids.
Angew Chem Int Ed Engl 2018;
57:15162-15166. [PMID:
30276949 PMCID:
PMC7199385 DOI:
10.1002/anie.201809799]
[Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/26/2018] [Indexed: 12/21/2022]
Abstract
Even though there are dozens of biologically active 2-substituted and 2,6-disubstituted piperidines, only a limited number of approaches exist for their synthesis. Herein is described two Mannich-type additions to nitrones, one using β-ketoacids under catalyst-free conditions and another using methyl ketones in the presence of chiral thioureas, which can generate a broad array of such 2-substituted materials, as well as other ring variants, in the form of β-N-hydroxy-aminoketones. Both processes have broad scope, with the latter providing products with high enantioselectivity (up to 98 %). The combination of these methods, along with other critical steps, has enabled 8-step total syntheses of the 2,6-disubstituted piperidine alkaloids (-)-lobeline and (-)-sedinone.
Collapse