1
|
Chu JCH, Escriche‐Navarro B, Xiong J, García‐Fernández A, Martínez‐Máñez R, Ng DKP. β-Galactosidase-Triggered Photodynamic Elimination of Senescent Cells with a Boron Dipyrromethene-Based Photosensitizer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401012. [PMID: 38884205 PMCID: PMC11336962 DOI: 10.1002/advs.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Senescence is a cellular response having physiological and reparative functions to preserve tissue homeostasis and suppress tumor growth. However, the accumulation of senescent cells would cause deleterious effects that lead to age-related dysfunctions and cancer progression. Hence, selective detection and elimination of senescent cells are crucial yet remain a challenge. A β-galactosidase (β-gal)-activated boron dipyrromethene (BODIPY)-based photosensitizer (compound 1) is reported here that can selectively detect and eradicate senescent cells. It contains a galactose moiety connected to a pyridinium BODIPY via a self-immolative nitrophenylene linker, of which the photoactivity is effectively quenched. Upon interactions with the senescence-associated β-gal, it undergoes enzymatic hydrolysis followed by self-immolation, leading to the release of an activated BODIPY moiety by which the fluorescence emission and singlet oxygen generation are restored. The ability of 1 to detect and eliminate senescent cells is demonstrated in vitro and in vivo, using SK-Mel-103 tumor-bearing mice treated with senescence-inducing therapy. The results demonstrate that 1 can be selectively activated in senescent cells to trigger a robust senolytic effect upon irradiation. This study breaks new ground in the design and application of new senolytic agents based on photodynamic therapy.
Collapse
Affiliation(s)
- Jacky C. H. Chu
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| | - Blanca Escriche‐Navarro
- Instituto Interuniversitario de Investigación de ReconocimientoMolecular y Desarrollo TecnológicoUniversitat Politècnica de ValènciaUniversitat de ValènciaValencia46022Spain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica e València, Instituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe FelipeValencia46012Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadrid28029Spain
| | - Junlong Xiong
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
- Department of PharmacyThe Affiliated Luohu Hospital of Shenzhen UniversityShenzhen UniversityShenzhen518001China
| | - Alba García‐Fernández
- Instituto Interuniversitario de Investigación de ReconocimientoMolecular y Desarrollo TecnológicoUniversitat Politècnica de ValènciaUniversitat de ValènciaValencia46022Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe FelipeValencia46012Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadrid28029Spain
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de ReconocimientoMolecular y Desarrollo TecnológicoUniversitat Politècnica de ValènciaUniversitat de ValènciaValencia46022Spain
- Unidad Mixta de Investigación en Nanomedicina y SensoresUniversitat Politècnica e València, Instituto de Investigación Sanitaria La Fe (IIS La Fe)Valencia46026Spain
- Unidad Mixta UPV‐CIPF de Investigación en Mecanismos de Enfermedades y NanomedicinaUniversitat Politècnica de València, Centro de Investigación Príncipe FelipeValencia46012Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Instituto de Salud Carlos IIIMadrid28029Spain
| | - Dennis K. P. Ng
- Department of ChemistryThe Chinese University of Hong KongShatin, N.T.Hong KongChina
| |
Collapse
|
2
|
Liu L, Zhang J, An R, Xue Q, Cheng X, Hu Y, Huang Z, Wu L, Zeng W, Miao Y, Li J, Zhou Y, Chen HY, Liu H, Ye D. Smart Nanosensitizers for Activatable Sono-Photodynamic Immunotherapy of Tumors by Redox-Controlled Disassembly. Angew Chem Int Ed Engl 2023; 62:e202217055. [PMID: 36602292 DOI: 10.1002/anie.202217055] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Tumor-targeted and stimuli-activatable nanosensitizers are highly desirable for cancer theranostics. However, designing smart nanosensitizers with multiple imaging signals and synergistic therapeutic activities switched on is challenging. Herein, we report tumor-targeted and redox-activatable nanosensitizers (1-NPs) for sono-photodynamic immunotherapy of tumors by molecular co-assembly and redox-controlled disassembly. 1-NPs show a high longitudinal relaxivity (r1 =18.7±0.3 mM-1 s-1 ), but "off" dual fluorescence (FL) emission (at 547 and 672 nm), "off" sono-photodynamic therapy and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition activities. Upon reduction by glutathione (GSH), 1-NPs rapidly disassemble and remotely release small molecules 2-Gd, Zn-PPA-SH and NLG919, concurrently switching on (1) dual FL emission, (2) sono-photodynamic therapy and (3) IDO1 inhibition activities. After systemic injection, 1-NPs are effective for bimodal FL and magnetic resonance (MR) imaging-guided sono-photodynamic immunotherapy of orthotropic breast and brain tumors in mice under combined ultrasound (US) and 671-nm laser irradiation.
Collapse
Affiliation(s)
- Lingjun Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ruibing An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Qi Xue
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xi Cheng
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jie Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhou
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hong Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Zhang H, Zhu C, Liang J, Li S, Hu LF, Liang H, Kuo WS, Shen XC. Smart Phototheranostics based on Carbon Nanohorns for Precise Imaging-Guided Post-PDT toward Residual Tumor Cells after Initial Phototherapy. Chemistry 2023; 29:e202203196. [PMID: 36331360 DOI: 10.1002/chem.202203196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
As promising photonic material, phototheranostics can be activated in the laser irradiation range of tumor with sensitivity and spatiotemporal precision. However, it is difficult to completely eradicate solid tumors due to their irregularity and limited laser irradiation area. Herein, multi-stimulus responsive HA-Ce6@SWNHs were constructed with single-walled carbon nanohorns (SWNHs) and chlorine e6 (Ce6) modified hyaluronic acid (HA) via non-covalent binding. This SWNHs-based phototheranostics not only exhibited water dispersion but also could target tumor and be activated by near-infrared light for photodynamic therapy (PDT) and photothermal therapy (PTT). Additionally, HA-Ce6@SWNHs could be degraded by hyaluronidase in residual tumor cells, causing HA-Ce6 to fall off the SWNHs surfaces to restore autofluorescence, thus precisely guiding the programmed photodynamic treatments for residual tumor cells after the initial phototherapy. Thus, this work provides a rationally designed multiple-stimulus-response strategy to develop smart SWNHs-based phototheranostics for precise PDT/PTT and post-treatment imaging-guided PDT of residual tumor cells.
Collapse
Affiliation(s)
- Hengming Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Chengyuan Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jiawei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shuzhen Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Lan-Fang Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Wen-Shuo Kuo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China.,School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, P. R. China.,Center for Allergy Immunology and Microbiome (AIM) China Medical University Children's Hospital/China Medical University Hospital, China Medical University, Taichung, 404, Taiwan
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China) Collaborative Innovation Center for Guangxi Ethnic Medicine School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
4
|
Digby EM, Ayan S, Shrestha P, Gehrmann EJ, Winter AH, Beharry AA. Photocaged DNA-Binding Photosensitizer Enables Photocontrol of Nuclear Entry for Dual-Targeted Photodynamic Therapy. J Med Chem 2022; 65:16679-16694. [PMID: 36480920 DOI: 10.1021/acs.jmedchem.2c01504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer treatment that requires a photosensitizer (PS), light, and molecular oxygen─a combination which produces reactive oxygen species (ROS) that can induce cancer cell death. To enhance the efficacy of PDT, dual-targeted strategies have been explored where two photosensitizers are administered and localize to different subcellular organelles. To date, a single small-molecule conjugate for dual-targeted PDT with light-controlled nuclear localization has not been achieved. We designed a probe composed of a DNA-binding PS (Br-DAPI) and a photosensitizing photocage (WinterGreen). Illumination with 480 nm light removes WinterGreen from the conjugate and produces singlet oxygen mainly in the cytosol, while Br-DAPI localizes to nuclei, binds DNA, and produces ROS using one- or two-photon illumination. We observe synergistic photocytotoxicity in MCF7 breast cancer cells, and a reduction in size of three-dimensional (3D) tumor spheroids, demonstrating that nuclear/cytosolic photosensitization using a single agent can enhance PDT efficacy.
Collapse
Affiliation(s)
- Elyse M Digby
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Seylan Ayan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa50011, United States
| | | | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa50011, United States
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
5
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
6
|
Tam LKB, He L, Ng DKP, Cheung PCK, Lo P. A Tumor‐Targeting Dual‐Stimuli‐Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy. Chemistry 2022; 28:e202201652. [DOI: 10.1002/chem.202201652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Leo K. B. Tam
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Lin He
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Peter C. K. Cheung
- School of Life Sciences The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| |
Collapse
|
7
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
8
|
Zhu M, Zhang H, Ran G, Yao Y, Yang Z, Ning Y, Yu Y, Zhang R, Peng X, Wu J, Jiang Z, Zhang W, Wang B, Gao S, Zhang J. Bioinspired Design of
seco
‐Chlorin Photosensitizers to Overcome Phototoxic Effects in Photodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202204330. [DOI: 10.1002/anie.202204330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Guangliu Ran
- Center for Advanced Quantum Studies Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 China
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zi‐Shu Yang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yi Yu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Xin Peng
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jiahui Wu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhifan Jiang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
- Spin-X Institute and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials South China University of Technology Guangzhou 510641 China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| |
Collapse
|
9
|
Zhu M, Zhang H, Ran G, Yao Y, Yang Z, Ning Y, Yu Y, Zhang R, Peng X, Wu J, Jiang Z, Zhang W, Wang B, Gao S, Zhang J. Bioinspired Design of
seco
‐Chlorin Photosensitizers to Overcome Phototoxic Effects in Photodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Guangliu Ran
- Center for Advanced Quantum Studies Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 China
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zi‐Shu Yang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yi Yu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Xin Peng
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jiahui Wu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhifan Jiang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
- Spin-X Institute and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials South China University of Technology Guangzhou 510641 China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| |
Collapse
|
10
|
Liu Y, Li Y, Yu L, Yang Z, Ding J, Wang KN, Zhang Y. Monocomponent Nanodots with Dichromatic Output Regulated by Synergistic Dual-Stimuli for Cervical Cancer Tissue Imaging and Photodynamic Tumor Therapy. Anal Chem 2021; 94:811-819. [PMID: 34962373 DOI: 10.1021/acs.analchem.1c03488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammation exists in the microenvironment of most, if not virtually all, tumors, which greatly exacerbates the difficulty of cancer treatment. Considering the superiority of activatable photosensitizers (PSs), a novel strategy of 'making friends with the enemy' for tumor treatment was proposed. In this strategy, the "enemy" refers to inflammatory cytokines and the tumor site is targeted by detecting the enemy. Upon detection, a dichromatic fluorescence signal is released and the PS is activated specifically by the inflammatory cytokines. In this study, a multifunctional PS (TPE-PTZ-Py) was rationally designed, which can be activated specifically under the synergistic action of hypochlorous acid (HClO) (one kind of inflammatory cytokines) and acid (one typical marker of tumor), and output a ratiometric fluorescence signal simultaneously. The sulfoxide analogue (TPE-PTZO-PyH) as the response product effectively produced 1O2 (1.8-fold higher than that obtained with Rose Bengal) and showed high phototoxicity (IC50 < 7.6 μM). More importantly, imaging analyses confirmed that TPE-PTZ-Py could be activated in human cervical cancer tissue. To date, several phenothiazine (PTZ)-based fluorescent probes have been developed for the selective sensing and imaging of HClO in subcellular organelles; however, this is the first phenothiazine-based nanodrug designed for the treatment of inflammation-associated tumors with a few side effects.
Collapse
Affiliation(s)
- Yujia Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| | - Yibing Li
- Department of Obstetrics and Gynecology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, Guangdong, P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710127, P. R. China
| | - Zhaoyi Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| | - Ju Ding
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| | - Kang-Nan Wang
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde) Foshan, Guangzhou, Guangdong 528308, P. R. China
| | - Yanrong Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang, Shaanxi 712100, P. R. China
| |
Collapse
|
11
|
Wang L, Huang Y, Yu Y, Zhong H, Xiao H, Zhang G, Zhang D. Photosensitizer with High Efficiency Generated in Cells via Light-Induced Self-Oligomerization of 4,6-Dibromothieno[3,4-b]thiophene Compound Entailing a Triphenyl Phosphonium Group. Adv Healthc Mater 2021; 10:e2100896. [PMID: 34494390 DOI: 10.1002/adhm.202100896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Photodynamic therapy (PDT) has emerged as an attractive alternative in cancer therapy, but therapeutic effects suffer from low photosensitizing efficiency and poor retention of photosensitizes in cancer cells. This paper reports the photosensitizers which show absorption and emission in the long-wavelength region and high photosensitizing efficiency can be formed in situ in cells from 4,6-dibromothieno[3,4-b]thiophene derivative (TT-5-P) after white light irradiation. The self-oligomerization of TT-5-P is uptaken in cells upon light irradiation-induced cell apoptosis simultaneously and efficiently. In addition, the formation of oligomers (TT-5-Ps) enhances the retention time in cells remarkably, which is advantageous for boosting the photodynamic therapy efficiency. Moreover, the selectivity toward tumor cells of TT-5-P can be improved obviously via the formation of complex of TT-5-P with albumin. This in situ photoinduced self-oligomerization strategy can be utilized to design effective biomaterials for long-term imaging and improved therapy.
Collapse
Affiliation(s)
- Lingna Wang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yingjie Yu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Huifei Zhong
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratories of Organic Solids Analytical Chemistry for Living Biosystems and State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
12
|
Digby EM, Ma T, Zipfel WR, Milstein JN, Beharry AA. Highly Potent Photoinactivation of Bacteria Using a Water-Soluble, Cell-Permeable, DNA-Binding Photosensitizer. ACS Infect Dis 2021; 7:3052-3061. [PMID: 34617443 DOI: 10.1021/acsinfecdis.1c00313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antimicrobial photodynamic therapy (APDT) employs a photosensitizer, light, and molecular oxygen to treat infectious diseases via oxidative damage, with a low likelihood for the development of resistance. For optimal APDT efficacy, photosensitizers with cationic charges that can permeate bacteria cells and bind intracellular targets are desired to not limit oxidative damage to the outer bacterial structure. Here we report the application of brominated DAPI (Br-DAPI), a water-soluble, DNA-binding photosensitizer for the eradication of both Gram-negative and Gram-positive bacteria (as demonstrated on N99 Escherichia coli and Bacillus subtilis, respectively). We observe intracellular uptake of Br-DAPI, ROS-mediated bacterial cell death via one- and two-photon excitation, and selective photocytotoxicity of bacteria over mammalian cells. Photocytotoxicity of both N99 E. coli and B. subtilis occurred at submicromolar concentrations (IC50 = 0.2-0.4 μM) and low light doses (5 min irradiation times, 4.5 J cm-2 dose), making it superior to commonly employed APDT phenothiazinium photosensitizers such as methylene blue. Given its high potency and two-photon excitability, Br-DAPI is a promising novel photosensitizer for in vivo APDT applications.
Collapse
Affiliation(s)
- Elyse M. Digby
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tianyi Ma
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| | - Warren R. Zipfel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Joshua N. Milstein
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7, Canada
| | - Andrew A. Beharry
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Guo X, Yu H, Shen W, Cai R, Li Y, Li G, Zhao W, Wang S. Synthesis and biological evaluation of NO-donor containing photosensitizers to induce ferroptosis of cancer cells. Bioorg Chem 2021; 116:105355. [PMID: 34592689 DOI: 10.1016/j.bioorg.2021.105355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive treatment method for tumors by exciting photosensitizers (PS) upon light irradiation to generate cytotoxic reactive oxygen species (ROS). However, the low oxygen concentration near the tumor tissue limits the therapeutic effect of PDT. Herein, we synthesized six chlorin e6 derivatives containing NO-donors to enhance their antitumor activity by synergistic effect of ROS and NO. The results revealed that the new NO-donor containing photosensitizers (PS-NO) exhibited more potent photodynamic activity than chlorin e6, and the introduction of NO donor moieties to chlorin e6 increased the level of NO and ROS in cells. The addition of Ferrostatin-1, a ferroptosis inhibitor, markedly reduced the photodynamic activity of PS-NO as well as the level of NO and ROS in cells. Mechanism studies further showed that PS-NO could reduce intracellular GSH level, inhibit GPX4 activity and promote malondialdehyde (MDA) accumulation upon light irradiation, which suggested the ferroptosis mechanism underlying the PDT effect of PS-NO.
Collapse
Affiliation(s)
- Xiuhan Guo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China.
| | - Haoze Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Wanjie Shen
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Rui Cai
- Center of Analysis and Research, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yueqing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Shisheng Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China.
| |
Collapse
|
14
|
Xu G, Lee LC, Kwok CW, Leung PK, Zhu J, Lo KK. Utilization of Rhenium(I) Polypyridine Complexes Featuring a Dinitrophenylsulfonamide Moiety as Biothiol‐Selective Phosphorogenic Bioimaging Reagents and Photocytotoxic Agents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guang‐Xi Xu
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Lawrence Cho‐Cheung Lee
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Cyrus Wing‐Ching Kwok
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Peter Kam‐Keung Leung
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Jing‐Hui Zhu
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Kenneth Kam‐Wing Lo
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
- Center of Functional Photonics City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| |
Collapse
|
15
|
Teng KX, Chen WK, Niu LY, Fang WH, Cui G, Yang QZ. BODIPY-Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen. Angew Chem Int Ed Engl 2021; 60:19912-19920. [PMID: 34227724 DOI: 10.1002/anie.202106748] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/20/2021] [Indexed: 12/16/2022]
Abstract
Developing Type-I photosensitizers is considered as an efficient approach to overcome the deficiency of traditional photodynamic therapy (PDT) for hypoxic tumors. However, it remains a challenge to design photosensitizers for generating reactive oxygen species by the Type-I process. Herein, we report a series of α,β-linked BODIPY dimers and a trimer that exclusively generate superoxide radical (O2 -. ) by the Type-I process upon light irradiation. The triplet formation originates from an effective excited-state relaxation from the initially populated singlet (S1 ) to triplet (T1 ) states via an intermediate triplet (T2 ) state. The low reduction potential and ultralong lifetime of the T1 state facilitate the efficient generation of O2 -. by inter-molecular charge transfer to molecular oxygen. The energy gap of T1 -S0 is smaller than that between 3 O2 and 1 O2 thereby precluding the generation of singlet oxygen by the Type-II process. The trimer exhibits superior PDT performance under the hypoxic environment.
Collapse
Affiliation(s)
- Kun-Xu Teng
- Institution Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Institution Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Institution Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
16
|
Teng K, Chen W, Niu L, Fang W, Cui G, Yang Q. BODIPY‐Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kun‐Xu Teng
- Institution Key Laboratory of Radiopharmaceuticals College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Wen‐Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Li‐Ya Niu
- Institution Key Laboratory of Radiopharmaceuticals College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Qing‐Zheng Yang
- Institution Key Laboratory of Radiopharmaceuticals College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
17
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark‐Hypoxia by Catalytic Microenvironment‐Tailored Nanoreactors for NIR‐II Fluorescence‐Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
18
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark-Hypoxia by Catalytic Microenvironment-Tailored Nanoreactors for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:15006-15012. [PMID: 33871140 DOI: 10.1002/anie.202102097] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO4 2- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO4 2- -catalyzed generation of 1 O2 from H2 O2 and protects MoO4 2- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.
Collapse
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
19
|
Liu Y, Chen M, Zhao Y, Lv S, Zheng D, Liu D, Song F. A Novel D-A-D Photosensitizer for Efficient NIR Imaging and Photodynamic Therapy. Chembiochem 2021; 22:2161-2167. [PMID: 33871143 DOI: 10.1002/cbic.202100107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) has attracted great interest in cancer theranostics owing to its minimal invasiveness and low side effect. In PDT, photosensitizers are indispensable components that generate cytotoxic reactive oxygen species (ROS). Tremendous efforts have been devoted to optimizing the photosensitizer with enhanced ROS efficiency. However, to improve the precision and controllability for PDT, developing NIR imaging-guided photosensitizers are still urgent and challenging. Here, we have designed a novel photosensitizer 2Cz-BTZ which integrated with intense NIR emission and photoinduced singlet oxygen 1 O2 generation capabilities. Moreover, after loading the photosensitizers 2Cz-BTZ into biocompatible amphiphilic polymers F127, the formed 2Cz-BTZ@F127 nanoparticles (NPs) exhibited good photoinduced therapy as well as long-term in vivo imaging capabilities. Under these merits, the 2Cz-BTZ@F127 NPs showed NIR imaging-guided PDT, which paves a promising way for spatiotemporally precise tumor theranostics.
Collapse
Affiliation(s)
- Yuhan Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - MiaoMiao Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, P. R. China
| | - Yanliang Zhao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Shibo Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Daoyuan Zheng
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Dapeng Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, P. R. China
| |
Collapse
|
20
|
Liu M, Li C. Recent Advances in Activatable Organic Photosensitizers for Specific Photodynamic Therapy. Chempluschem 2021; 85:948-957. [PMID: 32401421 DOI: 10.1002/cplu.202000203] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy is an alternative modality for the therapy of diseases such as cancer in a minimally invasive manner. The essential photosensitizer, which acts as a catalyst when absorbing light, converts oxygen into cytotoxic reactive oxygen species that ablate malignant cells through apoptosis and/or necrosis, destroy tumor microvasculature, and stimulate immunity. An activatable photosensitizer whose photoactivity could be turned on by a specific disease biomarker is capable of distinguishing healthy cells from diseased cells, thereby reducing off-target photodamage. In this Minireview, we highlight progress in activatable organic photosensitizers over the past five years, including: (i) biorthogonal activatable BODIPYs; (ii) activatable Se-rhodamine with single-cell resolution; (iii) silicon phthalocyanine targeting oxygen tension; (iv) general D-π-A scaffolds; and (v) AIEgens. The potential challenges and opportunities for developing new types of activatable organic photosensitizers to overcome the hypoxia dilemmas of photodynamic therapy are discussed.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
21
|
Ding Y, Liu W, Wu J, Zheng X, Ge J, Ren H, Zhang W, Lee CS, Wang P. Ultrasound-Enhanced Self-Exciting Photodynamic Therapy Based on Hypocrellin B. Chem Asian J 2021; 16:1221-1224. [PMID: 33881805 DOI: 10.1002/asia.202100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Indexed: 11/10/2022]
Abstract
Peroxalate CL as an energy source to excite photosensitizers has attracted tremendous attention in photodynamic therapy (PDT). In this work, peroxyoxalate CPPO and hypocrellin B (HB)-based nanoparticles (CBNPs) for ultrasound (US)-enhanced self-exciting PDT were designed and prepared. CBNPs showed an excellent therapeutic effect against cancer cells with the assistance of US. This US-enhanced-chemiluminescence system avoids the dependence on external light and provides an example for inspiring more effective and precise strategies for cancer treatment.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenjun Zhang
- Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Liu J, Shi J, Nie W, Wang S, Liu G, Cai K. Recent Progress in the Development of Multifunctional Nanoplatform for Precise Tumor Phototherapy. Adv Healthc Mater 2021; 10:e2001207. [PMID: 33000920 DOI: 10.1002/adhm.202001207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/04/2020] [Indexed: 12/16/2022]
Abstract
Phototherapy, including photodynamic therapy and photothermal therapy, mainly relies on phototherapeutic agents (PAs) to produce heat or toxic reactive oxygen species (ROS) to kill tumors. It has attracted wide attention due to its merits of noninvasive properties and negligible drug resistance. However, the phototoxicity of conventional PAs is one of the main challenges for its potential clinical application. This is mainly caused by the uncontrolled distribution of PA in vivo, as well as the inevitable damage to healthy cells along the light path. Ensuring the generation of ROS or heat specific at tumor site is the key for precise tumor phototherapy. In this review, the progress of targeted delivery of PA and activatable phototherapy strategies based on nanocarriers for precise tumor therapy is summarized. The research progress of passive targeting, active targeting, and activatable targeting strategies in the delivery of PA is also described. Then, the switchable nanosystems for tumor precise phototherapy in response to tumor microenvironment, including pH, glutathione (GSH), protein, and nucleic acid, are highlighted. Finally, the challenges and opportunities of nanocarrier-based precise phototherapy are discussed for clinical application in the future.
Collapse
Affiliation(s)
- Junjie Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 P. R. China
| | - Jinjin Shi
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 P. R. China
| | - Weimin Nie
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 P. R. China
| | - Sijie Wang
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 P. R. China
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
23
|
Ren K, Keshri P, Wu R, Sun Z, Yu Q, Tian Q, Zhao B, Bagheri Y, Xie Y, You M. A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kewei Ren
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Puspam Keshri
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Rigumula Wu
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Zhining Sun
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Qikun Yu
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Qian Tian
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Bin Zhao
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Yousef Bagheri
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Yiwen Xie
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Mingxu You
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
24
|
Ren K, Keshri P, Wu R, Sun Z, Yu Q, Tian Q, Zhao B, Bagheri Y, Xie Y, You M. A Genetically Encoded RNA Photosensitizer for Targeted Cell Regulation. Angew Chem Int Ed Engl 2020; 59:21986-21990. [PMID: 32797667 PMCID: PMC7747015 DOI: 10.1002/anie.202010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Genetically encoded RNA devices have emerged for various cellular applications in imaging and biosensing, but their functions as precise regulators in living systems are still limited. Inspired by protein photosensitizers, we propose here a genetically encoded RNA aptamer based photosensitizer (GRAP). Upon illumination, the RNA photosensitizer can controllably generate reactive oxygen species for targeted cell regulation. The GRAP system can be selectively activated by endogenous stimuli and light of different wavelengths. Compared with their protein analogues, GRAP is highly programmable and exhibits reduced off-target effects. These results indicate that GRAP enables efficient noninvasive target cell ablation with high temporal and spatial precision. This new RNA regulator system will be widely used for optogenetics, targeted cell ablation, subcellular manipulation, and imaging.
Collapse
Affiliation(s)
- Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Zhining Sun
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Bin Zhao
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yiwen Xie
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
25
|
Yuan B, Wu H, Wang H, Tang B, Xu J, Zhang X. A Self‐Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012477] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bin Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Han Wu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
26
|
Yuan B, Wu H, Wang H, Tang B, Xu J, Zhang X. A Self‐Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angew Chem Int Ed Engl 2020; 60:706-710. [DOI: 10.1002/anie.202012477] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Bin Yuan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Han Wu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
27
|
Li L, Shao C, Liu T, Chao Z, Chen H, Xiao F, He H, Wei Z, Zhu Y, Wang H, Zhang X, Wen Y, Yang B, He F, Tian L. An NIR-II-Emissive Photosensitizer for Hypoxia-Tolerant Photodynamic Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003471. [PMID: 33029855 DOI: 10.1002/adma.202003471] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Indexed: 06/11/2023]
Abstract
As a common feature in a majority of malignant tumors, hypoxia has become the Achilles' heel of photodynamic therapy (PDT). The development of type-I photosensitizers that show hypoxia-tolerant PDT efficiency provides a straightforward way to address this issue. However, type-I PDT materials have rarely been discovered. Herein, a π-conjugated molecule with A-D-A configuration, COi6-4Cl, is reported. The H2 O-dispersible nanoparticle of COi6-4Cl can be activated by an 880 nm laser, and displays hypoxia-tolerant type I/II combined PDT capability, and more notably, a high NIR-II fluorescence with a quantum yield over 5%. Moreover, COi6-4Cl shows a negligible photothermal conversion effect. The non-radiative decay of COi6-4Cl is suppressed in the dispersed and aggregated state due to the restricted molecular vibrations and distinct intermolecular steric hindrance induced by its four bulky side chains. These features make COi6-4Cl a distinguished single-NIR-wavelength-activated phototheranostic material, which performs well in NIR-II fluorescence-guided PDT treatment and shows an enhanced in vivo anti-tumor efficiency over the clinically approved Chlorin e6, by the equal stresses on hypoxia-tolerant anti-tumor therapy and deep-penetration imaging. Therefore, the great potential of COi6-4Cl in precise PDT cancer therapy against hypoxia challenges is demonstrated.
Collapse
Affiliation(s)
- Lanqing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Chen Shao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Tao Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Zhicong Chao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huanle Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Fan Xiao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huamei He
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yulin Zhu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Huan Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
- Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Xindan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Yating Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, China
| | - Feng He
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
28
|
Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo P. Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angew Chem Int Ed Engl 2020; 59:23228-23238. [DOI: 10.1002/anie.202010005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Yongxin Li
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Pan Sun
- CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin N.T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
29
|
Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo P. Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yongxin Li
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Pan Sun
- CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin N.T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
30
|
Zhang Y, Chen W, Zhang Y, Zhang X, Liu Y, Ju H. A Near‐Infrared Photo‐Switched MicroRNA Amplifier for Precise Photodynamic Therapy of Early‐Stage Cancers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
31
|
Zhang Y, Chen W, Zhang Y, Zhang X, Liu Y, Ju H. A Near-Infrared Photo-Switched MicroRNA Amplifier for Precise Photodynamic Therapy of Early-Stage Cancers. Angew Chem Int Ed Engl 2020; 59:21454-21459. [PMID: 32794611 DOI: 10.1002/anie.202009263] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/12/2020] [Indexed: 12/16/2022]
Abstract
Stimuli-responsive photodynamic therapy (PDT) is a hot topic in precise medicine, but the low abundance of responsive trigger molecules in early-stage disease limits application. Here we designed an amplifier with multiple upconversion luminances to achieve a near-infrared photo-switched cascade reaction triggered by specific microRNA and precise PDT of early-stage cancers. This amplifier was composed of photo-caged DNA nanocombs and an upconversion nanoparticle (UCNP) sensitized with IRDye 800CW. The nanocomb was prepared by assembling a photozipper-protected hairpin and two kinds of hybridizable hairpin probes on a DNA skeleton. Upon 808-nm light irradiation, the produced UV light cleaved off the photozipper to induce microRNA-responsive cascade hybridization reaction, activating the photosensitizers linked to different hairpins to generate reactive oxygen species (ROS) under the simultaneously emitted blue light for efficient PDT.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
32
|
Zou J, Zhu J, Yang Z, Li L, Fan W, He L, Tang W, Deng L, Mu J, Ma Y, Cheng Y, Huang W, Dong X, Chen X. A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment. Angew Chem Int Ed Engl 2020; 59:8833-8838. [PMID: 31943602 PMCID: PMC7250713 DOI: 10.1002/anie.201914384] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Indexed: 12/11/2022]
Abstract
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT-induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell-killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG-Py NPs) prepared by using a 2-pyridone-based diblock polymer (PEG-Py) to encapsulate a semiconducting, heavy-atom-free pyrrolopyrrolidone-tetraphenylethylene (DPPTPE) with high singlet-oxygen-generation ability both in dichloromethane and water. The PEG-Py can trap the 1 O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1 O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence-imaging-guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.
Collapse
Affiliation(s)
- J Zou
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - J Zhu
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Z Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - L Li
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - W Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - L He
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - W Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - L Deng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - J Mu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Y Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Y Cheng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - W Huang
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - X Dong
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - X Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
33
|
Digby EM, Sadovski O, Beharry AA. An Activatable Photosensitizer Targeting Human NAD(P)H: Quinone Oxidoreductase 1. Chemistry 2020; 26:2713-2718. [PMID: 31814180 DOI: 10.1002/chem.201904607] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022]
Abstract
Human NAD(P)H: Quinone Oxidoreductase 1 (hNQO1) is an attractive enzyme for cancer therapeutics due to its significant overexpression in tumors compared to healthy tissues. Its unique catalytic mechanism involving the two-electron reduction of quinone-based compounds has made it a useful target to exploit in the design of hNQO1 fluorescent chemosensors and hNQO1-activatable-prodrugs. In this work, hNQO1 is exploited for an optical therapeutic. The probe uses the photosensitizer, phenalenone, which is initially quenched via photo-induced electron transfer by the attached quinone. Native phenalenone is liberated in the presence of hNQO1 resulting in the production of cytotoxic singlet oxygen upon irradiation. hNQO1-mediated activation in A549 lung cancer cells containing high levels of hNQO1 induces a dose-dependent photo-cytotoxic response after irradiation. In contrast, no photo-cytotoxicity was observed in the normal lung cell line, MRC9. By targeting hNQO1, this scaffold can be used to enhance the cancer selectivity of photodynamic therapy.
Collapse
Affiliation(s)
- Elyse M Digby
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
34
|
Zou J, Zhu J, Yang Z, Li L, Fan W, He L, Tang W, Deng L, Mu J, Ma Y, Cheng Y, Huang W, Dong X, Chen X. A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jianhua Zou
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Jianwei Zhu
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Liangcan He
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Liming Deng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Jing Mu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Yuanyuan Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Yaya Cheng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
- Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) &, Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211800 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda MD 20892 USA
| |
Collapse
|
35
|
Cui D, Li J, Zhao X, Pu K, Zhang R. Semiconducting Polymer Nanoreporters for Near-Infrared Chemiluminescence Imaging of Immunoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906314. [PMID: 31833600 DOI: 10.1002/adma.201906314] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Real-time in vivo imaging of immunoactivation is critical for longitudinal evaluation of cancer immunotherapy, which, however, is rarely demonstrated. This study reports semiconducting polymer nanoreporters (SPNRs) with superoxide anion (O2 •- )-activatable chemiluminescence signals for in vivo imaging of immunoactivation during cancer immunotherapy. SPNRs are designed to comprise an SP and a caged chemiluminescence phenoxy-dioxetane substrate, which respectively serve as the chemiluminescence acceptor and donor to enable intraparticle chemiluminescence resonance energy transfer. SPNRs are intrinsically fluorescent but only become chemiluminescent upon activation by O2 •- . Representing the first O2 •- -activatable near-infrared chemiluminescent reporter, SPNR3 sensitively differentiates higher O2 •- levels in immune cells from other cells including cancer and normal cells. Following systemic administration, SPNR3 passively accumulates into tumors in living mice and activates the chemiluminescence signals responding to the concentration of O2 •- in the tumor microenvironment. Moreover, the enhancement of in vivo chemiluminescence signal after cancer immunotherapy is correlated with increased population of T cells in the tumor, proving its feasibility in tracking of T cell activation. Thus, SPNRs represent the first kind of chemiluminescent reporters competent for in vivo imaging of immunoactivation.
Collapse
Affiliation(s)
- Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xuhui Zhao
- The Affiliated Da Yi Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Ruiping Zhang
- The Affiliated Da Yi Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, P. R. China
| |
Collapse
|
36
|
Chen H, Li S, Wu M, Kenry, Huang Z, Lee C, Liu B. Membrane‐Anchoring Photosensitizer with Aggregation‐Induced Emission Characteristics for Combating Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2020; 59:632-636. [DOI: 10.1002/anie.201907343] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/27/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Huan Chen
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
37
|
Tang ZM, Liu YY, Ni DL, Zhou JJ, Zhang M, Zhao PR, Lv B, Wang H, Jin DY, Bu WB. Biodegradable Nanoprodrugs: "Delivering" ROS to Cancer Cells for Molecular Dynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904011. [PMID: 31793717 DOI: 10.1002/adma.201904011] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Biodegradable nanoprodrugs, inheriting the antitumor effects of chemotherapy drugs and overcoming the inevitable drawback of side effects on normal tissues, hold promise as next-generation cancer therapy candidates. Biodegradable nanoprodrugs of transferrin-modified MgO2 nanosheets are developed to selectively deliver reactive oxygen species to cancer cells for molecular dynamic therapy strategy. The nanosheets favor the acidic and low catalase activity tumor microenvironment to react with proton and release nontoxic Mg2+ . This reaction simultaneously produces abundant H2 O2 to induce cell death and damage the structure of transferrin to release Fe3+ , which will react with H2 O2 to produce highly toxic ·OH to kill tumor cells.
Collapse
Affiliation(s)
- Zhong-Min Tang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yan-Yan Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Da-Long Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jia-Jia Zhou
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Pei-Ran Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| | - Bin Lv
- Department of Radiotherapy, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Han Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Da-Yong Jin
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wen-Bo Bu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
38
|
Pan M, Jiang Q, Sun J, Xu Z, Zhou Y, Zhang L, Liu X. Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2019; 59:1897-1905. [PMID: 31696593 DOI: 10.1002/anie.201912574] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) has extraordinary promise for the treatment of many cancers. However, its clinical progress is impaired by the intrinsic hypoxic tumor microenvironment that limits PDT efficacy and the safety concern associated with biological specificity of photosensitizers or vehicles. Now it is demonstrated that rationally designed DNA nanosponges can load and delivery photosensitizer effectively, target tumor precisely, and relieve hypoxia-associated resistance remarkably to enhance the efficacy of PDT. Specifically, the approach exhibits a facile assembly process, provides programmable and versatile nanocarriers, and enables robust in vitro and in vivo anti-cancer efficacy with excellent biosafety. These findings represent a practical and safe approach by designer DNA nanoassemblies to combat cancer effectively and suggest a powerful strategy for broad biomedical application of PDT.
Collapse
Affiliation(s)
- Min Pan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qunying Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Junlin Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Zhen Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Yizhuo Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
39
|
|
40
|
Chen H, Li S, Wu M, Kenry, Huang Z, Lee C, Liu B. Membrane‐Anchoring Photosensitizer with Aggregation‐Induced Emission Characteristics for Combating Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huan Chen
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Kenry
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Chun‐Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of ChemistryCity University of Hong Kong 83 Tat Chee Avenue Kowloon, Hong Kong SAR P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| |
Collapse
|
41
|
Zhai W, Zhang Y, Liu M, Zhang H, Zhang J, Li C. Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angew Chem Int Ed Engl 2019; 58:16601-16609. [DOI: 10.1002/anie.201907510] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/12/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Wenhao Zhai
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Yongkang Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Ming Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Hao Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Junqing Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| |
Collapse
|
42
|
Zhai W, Zhang Y, Liu M, Zhang H, Zhang J, Li C. Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wenhao Zhai
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Yongkang Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Ming Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Hao Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Junqing Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| | - Changhua Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyKey Laboratory of Functional Polymer Materials of Ministry of EducationNankai University Tianjin 300071 P. R. China
| |
Collapse
|
43
|
Dal Corso A, Pignataro L, Belvisi L, Gennari C. Innovative Linker Strategies for Tumor‐Targeted Drug Conjugates. Chemistry 2019; 25:14740-14757. [DOI: 10.1002/chem.201903127] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Alberto Dal Corso
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di ChimicaUniversità degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
44
|
Zhou K, Tian R, Li G, Qiu X, Xu L, Guo M, Chigan D, Zhang Y, Chen X, He G. Cationic Chalcogenoviologen Derivatives for Photodynamic Antimicrobial Therapy and Skin Regeneration. Chemistry 2019; 25:13472-13478. [DOI: 10.1002/chem.201903278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Kun Zhou
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ran Tian
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Guoping Li
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xinyu Qiu
- Center for Tissue Engineering, School of StomatologyFourth Military Medical University Xi'an Shaanxi Province 710032 China
| | - Letian Xu
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Mengying Guo
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Dongdong Chigan
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Yanfeng Zhang
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xin Chen
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Gang He
- Frontier Institute of Science and TechnologyState Key Laboratory for Strength and Vibration of Mechanical StructuresXi'an Key Laboratory of Sustainable Energy Materials ChemistryXi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
45
|
Galliani M, Signore G. Poly(Lactide-Co-Glycolide) Nanoparticles Co-Loaded with Chlorophyllin and Quantum Dots as Photodynamic Therapy Agents. Chempluschem 2019; 84:1653-1658. [PMID: 31943880 DOI: 10.1002/cplu.201900342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Indexed: 01/26/2023]
Abstract
Photodynamic therapy (PDT) is an approach to treating cancer and involves light-induced activation of a photosensitizer that triggers the formation of reactive oxygen species (ROS) in targeted cells and subsequent cell death. Examples of photosensitizers are porphyrins, including the natural compound chlorophyll. These molecules can be delivered alone or co-formulated with an agent, such as quantum dots (QDs), that is able to excite them through a fluorescence resonance energy transfer (FRET)-based mechanism. We encapsulated a chlorophyllin copper complex and CdSe/ZnS core-shell QDs into biodegradable nanoparticles (NPs) composed of poly(lactide-co-glycolide) (PLGA), that allow modification with specific targeting ligands. When excited at 365 nm, FRET occurs between co-encapsulated QDs and chlorophyllin to result in the formation of ROS. This chlorophyllin-QD coformulation allows generation of ROS both in an aqueous environment and in cells, thus confirming the potential of this formulation in PDT.
Collapse
Affiliation(s)
- Marianna Galliani
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.,Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, San Giuliano Terme, Pisa, Italy
| |
Collapse
|
46
|
Yu G, Cen TY, He Z, Wang SP, Wang Z, Ying XW, Li S, Jacobson O, Wang S, Wang L, Lin LS, Tian R, Zhou Z, Ni Q, Li X, Chen X. Porphyrin Nanocage-Embedded Single-Molecular Nanoparticles for Cancer Nanotheranostics. Angew Chem Int Ed Engl 2019; 58:8799-8803. [PMID: 31034679 PMCID: PMC6570575 DOI: 10.1002/anie.201903277] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/26/2019] [Indexed: 12/18/2022]
Abstract
Single molecular nanoparticles (SMNPs) integrating imaging and therapeutic capabilities exhibit unparalleled advantages in cancer theranostics, ranging from excellent biocompatibility, high stability, prolonged blood lifetime to abundant tumor accumulation. Herein, we synthesize a sophisticated porphyrin nanocage that is further functionalized with twelve polyethylene glycol arms to prepare SMNPs (porSMNPs). The porphyrin nanocage embedded in porSMNPs can be utilized as a theranostic platform. PET imaging allows dynamic observation of the bio-distribution of porSMNPs, confirming their excellent circulation time and preferential accumulation at the tumor site, which is attributed to the enhanced permeability and retention effect. Moreover, the cage structure significantly promotes the photosensitizing effect of porSMNs by inhibiting the π-π stacking interactions of the photosensitizers, ablating of the tumors without relapse by taking advantage of photodynamic therapy.
Collapse
Affiliation(s)
- Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tian-Yong Cen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhimei He
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Shu-Ping Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xin-Wen Ying
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Li-Sen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Qianqian Ni
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
47
|
Yu G, Cen T, He Z, Wang S, Wang Z, Ying X, Li S, Jacobson O, Wang S, Wang L, Lin L, Tian R, Zhou Z, Ni Q, Li X, Chen X. Porphyrin Nanocage‐Embedded Single‐Molecular Nanoparticles for Cancer Nanotheranostics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guocan Yu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| | - Tian‐Yong Cen
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 P. R. China
| | - Zhimei He
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Shu‐Ping Wang
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 P. R. China
| | - Zhantong Wang
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| | - Xin‐Wen Ying
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 P. R. China
| | - Shijun Li
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal University Hangzhou 311121 P. R. China
| | - Orit Jacobson
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| | - Sheng Wang
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| | - Lei Wang
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Li‐Sen Lin
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| | - Rui Tian
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| | - Qianqian Ni
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| | - Xiaopeng Li
- Department of ChemistryUniversity of South Florida Tampa FL 33620 USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health Bethesda MD 20892 USA
| |
Collapse
|