1
|
Wang SC, Zhou X, Li YX, Zhang CY, Zhang ZY, Xiong YS, Lu G, Dong J, Weng J. Enabling Modular Click Chemistry Library through Sequential Ligations of Carboxylic Acids and Amines. Angew Chem Int Ed Engl 2024; 63:e202410699. [PMID: 38943043 DOI: 10.1002/anie.202410699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
High-throughput synthesis and screening of chemical libraries play pivotal roles in drug discovery. Click chemistry has emerged as a powerful strategy for constructing highly modular chemical libraries. However, the development of new click reactions and unlocking new clickable building blocks remain exceedingly challenging. Herein, we describe a double-click strategy that enables the sequential ligations of widely available carboxylic acids and amines with fluorosulfuryl isocyanate (FSO2NCO) via a modular amidation/SuFEx (sulfur-fluoride exchange) process. This method provides facile access to chemical libraries of N-fluorosulfonyl amides (RCONHSO2F) and N-acylsulfamides (RCONHSO2NR'R'') in near-quantitative yields under simple and practical conditions. The robustness and efficiency of this double click strategy is showcased by the facile construction of chemical libraries in 96-well microtiter plates from a large number of carboxylic acids and amines. Preliminary biological activity screening reveals that some compounds exhibit high antimicrobial activities against Gram-positive bacterium S. aureus and drug-resistant MRSA (MIC up to 6.25 μg ⋅ mL-1). These results provide compelling evidence for the potential application of modular click chemistry library as an enabling technology in high-throughput medicinal chemistry.
Collapse
Affiliation(s)
- Sheng-Cai Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xiang Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Ying-Xian Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Zi-Yan Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Gui Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiajia Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiang Weng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| |
Collapse
|
2
|
Kang JH, Kim DP. Ultrafast Flow Synthesis of o-Functionalized Benzenesulfonyl Fluorides and Subsequent SuFEx Connections via Lithiated Chemistry. Org Lett 2024. [PMID: 38780078 DOI: 10.1021/acs.orglett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein we present a flow-based, rapid, and straightforward approach to synthesize diverse functionalized sulfonyl fluorides by harnessing an aryllithium intermediate. The aryllithium intermediate was fully utilized under optimized conditions (0.016 s, -18 °C) to afford various functionalized sulfonyl fluorides and also intramolecular SuFEx cyclization products in high yields (27-94%). Furthermore, the integrated synthesis incorporating subsequent SuFEx connections with even unstable organolithium nucleophiles facilitated one-flow molecular assembly in high yields (42-72%).
Collapse
Affiliation(s)
- Ji-Ho Kang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
3
|
Bolding JE, Martín‐Gago P, Rajabi N, Gamon LF, Hansen TN, Bartling CRO, Strømgaard K, Davies MJ, Olsen CA. Aryl Fluorosulfate Based Inhibitors That Covalently Target the SIRT5 Lysine Deacylase. Angew Chem Int Ed Engl 2022; 61:e202204565. [PMID: 36130196 PMCID: PMC9828517 DOI: 10.1002/anie.202204565] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/12/2023]
Abstract
The sirtuin enzymes are a family of lysine deacylases that regulate gene transcription and metabolism. Sirtuin 5 (SIRT5) hydrolyzes malonyl, succinyl, and glutaryl ϵ-N-carboxyacyllysine posttranslational modifications and has recently emerged as a vulnerability in certain cancers. However, chemical probes to illuminate its potential as a pharmacological target have been lacking. Here we report the harnessing of aryl fluorosulfate-based electrophiles as an avenue to furnish covalent inhibitors that target SIRT5. Alkyne-tagged affinity-labeling agents recognize and capture overexpressed SIRT5 in cultured HEK293T cells and can label SIRT5 in the hearts of mice upon intravenous injection of the compound. This work demonstrates the utility of aryl fluorosulfate electrophiles for targeting of SIRT5 and suggests this as a means for the development of potential covalent drug candidates. It is our hope that these results will serve as inspiration for future studies investigating SIRT5 and general sirtuin biology in the mitochondria.
Collapse
Affiliation(s)
- Julie E. Bolding
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Pablo Martín‐Gago
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Nima Rajabi
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Luke F. Gamon
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3DK-2200CopenhagenDenmark
| | - Tobias N. Hansen
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Christian R. O. Bartling
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| | - Michael J. Davies
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3DK-2200CopenhagenDenmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenUniversitetsparken 2DK-2100CopenhagenDenmark
| |
Collapse
|
4
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022; 61:e202207684. [DOI: 10.1002/anie.202207684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Mingqi Zhao
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Shuangshuang Ji
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Lu Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Na Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
5
|
Wang P, Zhang H, Zhao M, Ji S, Lin L, Yang N, Nie X, Song J, Liao S. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng Wang
- Fuzhou University College of Chemistry CHINA
| | | | - Mingqi Zhao
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Shuangshuang Ji
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Lu Lin
- Fuzhou University College of Chemistry CHINA
| | - Na Yang
- Fuzhou University College of Chemistry CHINA
| | | | - Jinshuai Song
- Zhengzhou University College of Chemistry and Molecular Engineering CHINA
| | - Saihu Liao
- Fuzhou University College of Chemistry 2 Xueyuan RoadUniversity Town 350108 Fuzhou CHINA
| |
Collapse
|
6
|
Chen P, Sun J, Zhu C, Tang G, Wang W, Xu M, Xiang M, Zhang CJ, Zhang ZM, Gao L, Yao SQ. Cell-Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR-ABL Kinase. Angew Chem Int Ed Engl 2022; 61:e202203878. [PMID: 35438229 DOI: 10.1002/anie.202203878] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Despite recent interests in developing lysine-targeting covalent inhibitors, no general approach is available to create such compounds. We report herein a general approach to develop cell-active covalent inhibitors of protein kinases by targeting the conserved catalytic lysine residue using key SuFEx and salicylaldehyde-based imine chemistries. We validated the strategy by successfully developing (irreversible and reversible) covalent inhibitors against BCR-ABL kinase. Our lead compounds showed high levels of selectivity in biochemical assays, exhibited nanomolar potency against endogenous ABL kinase in cellular assays, and were active against most drug-resistant ABL mutations. Among them, the salicylaldehyde-containing A5 is the first-ever reversible covalent ABL inhibitor that possessed time-dependent ABL inhibition with prolonged residence time and few cellular off-targets in K562 cells. Bioinformatics further suggested the generality of our strategy against the human kinome.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.,Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan, Guangdong, 528200, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and, Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and, Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.,Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan, Guangdong, 528200, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
7
|
Chen P, Sun J, Zhu C, Tang G, Wang W, Xu M, Xiang M, Zhang C, Zhang Z, Gao L, Yao SQ. Cell‐Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR‐ABL Kinase. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Chengjun Zhu
- School of Pharmacy Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan Guangdong 528200 China
| | - Guanghui Tang
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Chong‐Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Zhi‐Min Zhang
- School of Pharmacy Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Foshan Guangdong 528200 China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat-sen University Shenzhen 518107 China
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
8
|
Frye NL, Daniliuc CG, Studer A. Radical 1-Fluorosulfonyl-2-alkynylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202115593. [PMID: 34958162 PMCID: PMC9305502 DOI: 10.1002/anie.202115593] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/12/2022]
Abstract
Sulfonyl fluorides have found widespread use in chemical biology and drug discovery. The development of synthetic methods for the introduction of the sulfonyl fluoride moiety is therefore of importance. Herein, a transition-metal-free radical 1,2-difunctionalization of unactivated alkenes via FSO2 -radical addition with subsequent vicinal alkynylation to access β-alkynyl-fluorosulfonylalkanes is presented. Alkynyl sulfonyl fluorides are introduced as highly valuable bifunctional radical trapping reagents that also serve as FSO2 -radical precursors. The β-alkynyl-fluorosulfonylalkanes obtained in these transformations can be readily diversified by using SuFEx click chemistry to obtain sulfonates and sulfonamides.
Collapse
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
9
|
Frye NL, Daniliuc CG, Studer A. Radikalische 1‐Fluorsulfonyl‐2‐alkinylierung von nicht aktivierten Alkenen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| |
Collapse
|
10
|
Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. Electrochemical Oxo-Fluorosulfonylation of Alkynes under Air: Facile Access to β-Keto Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021; 60:27271-27276. [PMID: 34729882 DOI: 10.1002/anie.202112118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Indexed: 11/12/2022]
Abstract
Radical fluorosulfonylation is emerging as an appealing approach for the synthesis of sulfonyl fluorides, which have widespread applications in many fields, in particular in the context of chemical biology and drug development. Here, we report the first investigation of FSO2 radical generation under electrochemical conditions, and the establishment of a new and facile approach for the synthesis of β-keto sulfonyl fluorides via oxo-fluorosulfonylation of alkynes with sulfuryl chlorofluoride as the radical precursor and air as the oxidant. This electrochemical protocol is amenable to access two different products (β-keto sulfonyl fluorides or α-chloro-β-keto sulfonyl fluorides) with the same reactants. The β-keto sulfonyl fluoride products can be utilized as useful building blocks in the synthesis of various derivatives and heterocycles, including the first synthesis of an oxathiazole dioxide compound. Furthermore, some β-keto sulfonyl fluorides and derivatives exhibited notably potent activities against Bursaphelenchus xylophilus and Colletotrichum gloeosporioides.
Collapse
Affiliation(s)
- Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yiheng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiuyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
11
|
Chen D, Nie X, Feng Q, Zhang Y, Wang Y, Wang Q, Huang L, Huang S, Liao S. Electrochemical Oxo‐Fluorosulfonylation of Alkynes under Air: Facile Access to β‐Keto Sulfonyl Fluorides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yingyin Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yiheng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Qiuyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
| |
Collapse
|
12
|
Wagh SB, Maslivetc VA, La Clair JJ, Kornienko A. Lessons in Organic Fluorescent Probe Discovery. Chembiochem 2021; 22:3109-3139. [PMID: 34062039 PMCID: PMC8595615 DOI: 10.1002/cbic.202100171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/22/2021] [Indexed: 02/03/2023]
Abstract
Fluorescent probes have gained profound use in biotechnology, drug discovery, medical diagnostics, molecular and cell biology. The development of methods for the translation of fluorophores into fluorescent probes continues to be a robust field for medicinal chemists and chemical biologists, alike. Access to new experimental designs has enabled molecular diversification and led to the identification of new approaches to probe discovery. This review provides a synopsis of the recent lessons in modern fluorescent probe discovery.
Collapse
Affiliation(s)
- Sachin B Wagh
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - Vladimir A Maslivetc
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| | - James J La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA, 92163-1062, USA
| | - Alexander Kornienko
- The Department of Chemistry and Biochemistry, Texas State University, San Marcos, USA
| |
Collapse
|
13
|
Bui TT, Tran VH, Kim H. Visible‐Light‐Mediated Synthesis of Sulfonyl Fluorides from Arylazo Sulfones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tien Tan Bui
- Department of Chemistry Iowa State University Ames Iowa 50011 United States
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Van Hieu Tran
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Hee‐Kwon Kim
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University- Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
14
|
Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro-Fluorosulfonylation of Alkynes. Angew Chem Int Ed Engl 2021; 60:22035-22042. [PMID: 34382306 DOI: 10.1002/anie.202109072] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 12/11/2022]
Abstract
Sulfonyl fluorides have widespread applications in many important fields, including ligation chemistry, chemical biology, and drug discovery. Therefore, new methods to increase the synthetic efficiency and expand the available structures of sulfonyl fluorides are highly in demand. Here, we introduce a new and powerful class of sulfonyl fluoride hubs, β-chloro alkenylsulfonyl fluorides (BCASF), which can be constructed via radical chloro-fluorosulfonyl difunctionalization of alkynes under photoredox conditions. BCASF molecules exhibit versatile reactivities and well undergo a series of transformations at the chloride site while keeping the sulfonyl fluoride group intact, including reduction, Suzuki coupling, Sonogashira coupling, as well as nucleophilic substitution with various nitrogen, oxygen, and sulfur nucleophiles. By using BCASF as a synthetic hub, a wide range of sulfonyl fluorides becomes readily accessible, such as cis alkenylsulfonyl fluorides, dienylsulfonyl fluorides, and ynenylsulfonyl fluorides, which are challenging or even not possible to synthesize before with the known methods. Moreover, further application of BCASF to the late-stage modification of peptides and drugs is also demonstrated.
Collapse
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuhao Hong
- Tan Kah Kee Innovation Laboratory (IKKEM) Center for Micro-nano Fabrication and Advanced Characterization, Xiamen University, Xiamen, 361102, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chenxi Mao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory of Molecular Science (BNLMS), Beijing, 100190, China
| |
Collapse
|
15
|
Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro‐Fluorosulfonylation of Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuhao Hong
- Tan Kah Kee Innovation Laboratory (IKKEM) Center for Micro-nano Fabrication and Advanced Characterization Xiamen University Xiamen 361102 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Chenxi Mao
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
16
|
Quach D, Tang G, Anantharajan J, Baburajendran N, Poulsen A, Wee JLK, Retna P, Li R, Liu B, Tee DHY, Kwek PZ, Joy JK, Yang W, Zhang C, Foo K, Keller TH, Yao SQ. Strategic Design of Catalytic Lysine‐Targeting Reversible Covalent BCR‐ABL Inhibitors**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David Quach
- NUS Graduate School for Integrative Sciences and Engineering 21 Lower Kent Ridge, University Hall, Tan China Tuan Wing, #04-02 Singapore 119077 Singapore
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Guanghui Tang
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Jothi Anantharajan
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Anders Poulsen
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - John L. K. Wee
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Priya Retna
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Rong Li
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Boping Liu
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Doris H. Y. Tee
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Perlyn Z. Kwek
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Joma K. Joy
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Wan‐Qi Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Chong‐Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation Institute of Materia Medica Peking Union Medical College and Chinese Academy of Medical Sciences Beijing 100050 China
| | - Klement Foo
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Thomas H. Keller
- Experimental Drug Development Centre 10 Biopolis Road, Chromos, #05-01 Singapore 138670 Singapore
| | - Shao Q. Yao
- NUS Graduate School for Integrative Sciences and Engineering 21 Lower Kent Ridge, University Hall, Tan China Tuan Wing, #04-02 Singapore 119077 Singapore
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
17
|
Quach D, Tang G, Anantharajan J, Baburajendran N, Poulsen A, Wee JLK, Retna P, Li R, Liu B, Tee DHY, Kwek PZ, Joy JK, Yang WQ, Zhang CJ, Foo K, Keller TH, Yao SQ. Strategic Design of Catalytic Lysine-Targeting Reversible Covalent BCR-ABL Inhibitors*. Angew Chem Int Ed Engl 2021; 60:17131-17137. [PMID: 34008286 DOI: 10.1002/anie.202105383] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 12/28/2022]
Abstract
Targeted covalent inhibitors have re-emerged as validated drugs to overcome acquired resistance in cancer treatment. Herein, by using a carbonyl boronic acid (CBA) warhead, we report the structure-based design of BCR-ABL inhibitors via reversible covalent targeting of the catalytic lysine with improved potency against both wild-type and mutant ABL kinases, especially ABLT315I bearing the gatekeeper residue mutation. We show the evolutionarily conserved lysine can be targeted selectively, and the selectivity depends largely on molecular recognition of the non-covalent pharmacophore in this class of inhibitors, probably due to the moderate reactivity of the warhead. We report the first co-crystal structures of covalent inhibitor-ABL kinase domain complexes, providing insights into the interaction of this warhead with the catalytic lysine. We also employed label-free mass spectrometry to evaluate off-targets of our compounds at proteome-wide level in different mammalian cells.
Collapse
Affiliation(s)
- David Quach
- NUS Graduate School for Integrative Sciences and Engineering, 21 Lower Kent Ridge, University Hall, Tan China Tuan Wing, #04-02, Singapore, 119077, Singapore.,Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jothi Anantharajan
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Anders Poulsen
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - John L K Wee
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Priya Retna
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Rong Li
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Boping Liu
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Doris H Y Tee
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Perlyn Z Kwek
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Joma K Joy
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Wan-Qi Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Klement Foo
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Thomas H Keller
- Experimental Drug Development Centre, 10 Biopolis Road, Chromos, #05-01, Singapore, 138670, Singapore
| | - Shao Q Yao
- NUS Graduate School for Integrative Sciences and Engineering, 21 Lower Kent Ridge, University Hall, Tan China Tuan Wing, #04-02, Singapore, 119077, Singapore.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
18
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad‐Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Xiaohui Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
19
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad-Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates*. Angew Chem Int Ed Engl 2021; 60:7397-7404. [PMID: 33337566 DOI: 10.1002/anie.202013976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/30/2020] [Indexed: 12/18/2022]
Abstract
A broad-spectrum, catalytic method has been developed for the synthesis of sulfonamides and sulfamates. With the activation by the combination of a catalytic amount of 1-hydroxybenzotriazole (HOBt) and silicon additives, amidations of sulfonyl fluorides and fluorosulfates proceeded smoothly and excellent yields were generally obtained (87-99 %). Noticeably, this protocol is particularly efficient for sterically hindered substrates. Catalyst loading is generally low and only 0.02 mol % of catalyst is required for the multidecagram-scale synthesis of an amantadine derivative. In addition, the potential of this method in medicinal chemistry has been demonstrated by the synthesis of the marketed drug Fedratinib via a key intermediate sulfonyl fluoride 13. Since a large number of amines are commercially available, this route provides a facile entry to access Fedratinib analogues for biological screening.
Collapse
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
20
|
Nie X, Xu T, Song J, Devaraj A, Zhang B, Chen Y, Liao S. Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angew Chem Int Ed Engl 2021; 60:3956-3960. [PMID: 33197094 DOI: 10.1002/anie.202012229] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Indexed: 12/22/2022]
Abstract
Sulfonyl fluorides have widespread applications in many fields. In particular, their unique biological activity has drawn considerable research interest in the context of chemical biology and drug discovery in the past years. Therefore, new and efficient methods for the synthesis of sulfonyl fluorides are highly in demand. In contrast to extensive studies on FSO2 + -type reagents, a radical fluorosulfonylation reaction with a fluorosulfonyl radical (FSO2 . ) remains elusive so far, probably owing to its instability and difficulty in generation. Herein, the development of the first radical fluorosulfonylation of alkenes based on FSO2 radicals generated under photoredox conditions is reported. This radical approach provides a new and general access to alkenyl sulfonyl fluorides, including structures that would otherwise be challenging to synthesize with previously established cross-coupling methods. Moreover, extension to the late-stage fluorosulfonylation of natural products is also demonstrated.
Collapse
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Anandkumar Devaraj
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Bolun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory of Molecular Science (BNLMS), Beijing, 100190, China
| |
Collapse
|
21
|
Nie X, Xu T, Song J, Devaraj A, Zhang B, Chen Y, Liao S. Radical Fluorosulfonylation: Accessing Alkenyl Sulfonyl Fluorides from Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
| | - Anandkumar Devaraj
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Bolun Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yong Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
22
|
Zhang X, Fang W, Lekkala R, Tang W, Qin H. An Easy, General and Practical Method for the Construction of Alkyl Sulfonyl Fluorides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000515] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Wan‐Yin Fang
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Wenjian Tang
- School of PharmacyAnhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical University Hefei 230032 People's Republic of China
| | - Hua‐Li Qin
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
23
|
Lence E, Maneiro M, Sanz‐Gaitero M, Raaij MJ, Thompson P, Hawkins AR, González‐Bello C. Self‐Immolation of a Bacterial Dehydratase Enzyme by its Epoxide Product. Chemistry 2020; 26:8035-8044. [DOI: 10.1002/chem.202000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - María Maneiro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| | - Marta Sanz‐Gaitero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología (CSIC) Campus Cantoblanco 28049 Madrid Spain
| | - Mark J. Raaij
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología (CSIC) Campus Cantoblanco 28049 Madrid Spain
| | - Paul Thompson
- Newcastle University Biosciences InstituteThe Medical SchoolNewcastle University Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Alastair R. Hawkins
- Newcastle University Biosciences InstituteThe Medical SchoolNewcastle University Framlington Place Newcastle upon Tyne NE2 4HH UK
| | - Concepción González‐Bello
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela Jenaro de la Fuente s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
24
|
Cheng M, Guo C, Gross ML. The Application of Fluorine-Containing Reagents in Structural Proteomics. Angew Chem Int Ed Engl 2020; 59:5880-5889. [PMID: 31588625 PMCID: PMC7485648 DOI: 10.1002/anie.201907662] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Structural proteomics refers to large-scale mapping of protein structures in order to understand the relationship between protein sequence, structure, and function. Chemical labeling, in combination with mass-spectrometry (MS) analysis, have emerged as powerful tools to enable a broad range of biological applications in structural proteomics. The key to success is a biocompatible reagent that modifies a protein without affecting its high-order structure. Fluorine, well-known to exert profound effects on the physical and chemical properties of reagents, should have an impact on structural proteomics. In this Minireview, we describe several fluorine-containing reagents that can be applied in structural proteomics. We organize their applications around four MS-based techniques: a) affinity labeling, b) activity-based protein profiling (ABPP), c) protein footprinting, and d) protein cross-linking. Our aim is to provide an overview of the research, development, and application of fluorine-containing reagents in protein structural studies.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| | - Chunyang Guo
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| |
Collapse
|
25
|
Dalton SE, Campos S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. Chembiochem 2020; 21:1080-1100. [DOI: 10.1002/cbic.201900674] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel E. Dalton
- Astex Pharmaceuticals 436 Cambridge Science Park Milton Road Cambridge CB4 0QA UK
| | - Sebastien Campos
- PharmaronDrug Discovery Services Europe Hertford Road Hoddesdon Hertfordshire EN11 9BU UK
| |
Collapse
|
26
|
|